Math Comic Book

Manga guide to Math series

The Manga Guide to Linear Algebra
The Manga Guide to Calculus
The Manga Guide to Statistics

Check out the following interesting comic books explaining Math (Calculus, Linear Algebra, and Statistics) in a fun and enjoyable way.

In The Manga Guide to Calculus, you’ll follow along with Noriko as she learns that calculus is more than just a class designed to weed out would-be science majors. You’ll see that calculus is a useful way to understand the patterns in physics, economics, and the world around us, with help from real-world examples like probability, supply and demand curves, the economics of pollution, and the density of Shochu (a Japanese liquor).

Mr. Seki teaches Noriko how to:

  • Use differentiation to understand a function’s rate of change
  • Apply the fundamental theorem of calculus, and grasp the relationship between a function’s derivative and its integral
  • Integrate and differentiate trigonometric and other complicated functions
  • Use multivariate calculus and partial differentiation to deal with tricky functions
  • Use Taylor Expansions to accurately imitate difficult functions with polynomials

Whether you’re struggling through a calculus course for the first time or you just need a painless refresher, you’ll find what you’re looking for in The Manga Guide to Calculus.

Follow along in The Manga Guide to Linear Algebra as Reiji takes Misa from the absolute basics of this tricky subject through mind-bending operations like performing linear transformations, calculating determinants, and finding eigenvectors and eigenvalues. With memorable examples like miniature golf games and karate tournaments, Reiji transforms abstract concepts into something concrete, understandable, and even fun.

As you follow Misa through her linear algebra crash course, you’ll learn about:

  • Basic vector and matrix operations such as addition, subtraction, and multiplication
  • Linear dependence, independence, and bases
  • Using Gaussian elimination to calculate inverse matrices
  • Subspaces, dimension, and linear span
  • Practical applications of linear algebra in fields like computer graphics, cryptography, and engineering

But Misa’s brother may get more than he bargained for as sparks start to fly between student and tutor. Will Reiji end up with the girl—or just a pummeling from her oversized brother? Real math, real romance, and real action come together like never before in The Manga Guide to Linear Algebra.

The Manga Guide to Statistics

This manga textbook is written for those interested in understanding principles of statistics. Each of the seven chapters is organized into four sections: a cartoon, a text explanation to supplement the cartoon, an exercise that includes the answer, and a summary. Readers can learn much about the subject by just reading the cartoon, but they will gain a more thorough understanding by working through the other three sections in each chapter. Yamamoto provides Rui with easy-to-understand examples and graphic illustrations, making the subject less intimidating.


Axiom

tomcircle's avatarMath Online Tom Circle

Axiom ( Greek ): meant request . The reader is requested to accept the axioms unquestioningly as the rules of the game.

Euclid’s “Element” built the whole Geometry with only 5 axioms.
The 5th axiom “Parallel line” was not challenged for 3,000 years until 19th CE Gauss & Riemann developed the Non-Euclidian Geometry.

View original post

What is “sin A”

tomcircle's avatarMath Online Tom Circle

What is “sin A” concretely ?

1. Draw a circle (diameter 1)
2. Connect any 3 points on the circle to form a triangle of angles A, B, C.
3. The length of sides opposite A, B, C are sin A, sin B, sin C, respectively.

Proof:
By Sine Rule:

$latex frac{a}{sin A} = frac{b}{sin B} =frac{c}{sin C} = 2R = 1$
where sides a,b,c opposite angles A, B, C respectively.
a = sin A
b = sin B
c = sin C

20130421-193110.jpg

View original post

Vector Algebra

tomcircle's avatarMath Online Tom Circle

Vector changes Geometry to Algebra

1. No complexity of Analytical Geometry
2. Remove the astute dotted (helping) line in Geometry
3. No need diagram: Use only 2 vector properties:
Head- to-Tail:
$latex vec{AC}=vec{AB}+vec {BC}$
Closed Loop:
$latex vec{DE}+vec{EF}+vec{FD}=0$
4. Enable Computer automated proof of Geometry via Algebra.

Example: 任意四边形 Quadrilateral ABCD with M,N midpoints of AB, CD, resp.
Prove: MN=1/2(BC+AD)
Proof: (by vector):

Consider MBCN:
MN=MB+ BC+ CN..(1)

Consider MADN:
MN=MA+ AD+ DN..(2)

(1) +(2):
2MN=(MB +MA) +
(BC +AD) +(CN +DN)

but (MB +MA) =0,
(CN +DN) =0 [same magnitude but different direction cancelled out ]

=> MN=1/2 (BC +AD)

Special cases:
1. A = B (=M)
=> triangle ACD
AN = 1/2 (AC +AD)
2. BC // AD
=> Trapezium ABCD
MN=1/2 (BC +AD)
=> MN // BC // AD

View original post

Plato Solids

tomcircle's avatarMath Online Tom Circle

Why only 5 Plato solids ?

Plato Solid is: Regular Polyhedron 正多面体

  • Each Face is n-sided polygon
  • Each Vertex is common to m-edges (m ≥ 3)

Only 5 solids possible:
Tetrahedron (n,m)=(3,3) 正四面体platonic_solids
Hexahedron (or Cube) (n,m)=(4,3) 正六面体
Octahedron  (n,m)=(3,4)正八面体
Dodecahedron  (n,m)=(5,3)正十二面体
Icosahedron  (n,m)=(3,5)正二十面体

Proof:
Since each Edge (E) is common to 2 Faces (F)
=> n Faces counts double the edges
nF = 2E …(1)

Since each Vertex has m Edges, each Edge has 2 end-points (Vertex).
=> m Vertex counts double the edges
mV = 2E …(2)

(1) : E= n/2 F
(2): V= 2/m. E = n/m. F
(1) & (2) into Euler Formula: V -E + F = 2
(n/m. F) – (n/2.F) + F = 2
F.(2m + 2n – mn) = 4m

Since F>0 , m>0
=> (2m + 2n – mn) >0
=> – (mn -2n -2m) >…
=> (mn -2n -2m) <…
=>…

View original post 154 more words

Indian Vedic Math

tomcircle's avatarMath Online Tom Circle

Bharati Krishna Tirthaji @ early 19xx, a former Indian child prodigy graduating in Sanskrit, Philosophy, English, Math, History & Science at age 20.

16 sutras (aphorisms):
1. By one more than the one before
2. All from 9 and the last from 10
3. Vertically and cross-wise
4. Transpose and Apply
5. If the Samuccaya is the same it is Zero
6. If One is in Ratio the Other is Zero
7. By + and by –
8. By the Completion or Non-Completion
9. Differential Calculus
10. By the Deficiency
11. Specific and General
12. The Remainders by the Last Digit
13. The Ultimate and Twice the Penultimate
14. By One Less than the One Before
15. The Product of the Sum
16. All the Multipliers

View original post

Vedic (Multiply)

tomcircle's avatarMath Online Tom Circle

Vedic Math & 16 Sutras

[s2]: All from 9 and the last from 10
[s3a]: Vertically and
[s3b]: Cross-wise

Example: 872 x 997 = Y ?

Apply [s2]: (8-9) =-1 , (7-9)= -2 , last (2-10) = -8
872 -> [-128]

[s2]: (9-9) = & (9-9)= & last (7-10)=-3
997 -> [-003]

Arrange in 2 vertical columns as:
872 -> [-128]
997 -> [-003]

[s3a]: (Vertically):
[-128] x [-003] =384

[s3b]: (Cross-wise):
872 + [-003] = 869
=> Y = 869,384

Now, Quick Demo : Calculate 892,763 x 999,998 = Y

892,763 [-107,267]
999,998 [-2]
=> Y= 892,761,214,534

View original post 2 more words

Vedic (Factorize)

tomcircle's avatarMath Online Tom Circle

Vedic Sutras:
[s1]: proportionally
[s2]: first by first and last by last

Example 1: E= 2x² + 7x +6

Split 7x = 3x+4x
First ratio of coefficient (2x²+3x) -> 2:3
Last ratio of coefficient (4x+6) -> 4:6=2:3
=> 1st factor = (2x+3)

2nd factor:
2x²/(2x) +6/(3)= (x+2)

=> E = (2x+3).(x+2)

Example 2: Factorize E(x, y, z) = x²+xy-2y²+2xz -5yz-3z²

1. Let z =…
E’= x²+xy-2y² = (x+2y)(x-y)

2. Let y=0
E’= x²+2xz-3z² = (x+3z)(x-z)

=> E(x, y, z) = (x+2y+3z)(x-y-z)

Example 3:  P(x, y, z) = 3x² + 7xy + 2y² +11xz + 7yz + 6z² + 14x + 8y + 14z + 8

1. Eliminate y=z=0, retain x:

P = 3x²+14x+8= (x+4)(3x+2)

2. Eliminate…

View original post 33 more words

Vedic (GCD Polynomials)

tomcircle's avatarMath Online Tom Circle

G.C.D Polynomials by Vedic Math

Find G.C.D of P(x) & Q(x):

P(x) = 4x³ +13x²+19x+4
Q(x) = 2x³+5x²+5x -4

Vedic method:
1. Eliminate 4x³ in P(x):
P – 2Q = 3x² +9x+12

/3 => P-2Q = (x²+3x+4)

2. Q+P = 6x³+18x²+24x

/(6x) => Q+P = (x²+3x+4)

3. G.C.D. = (x²+3x+4)

P= (x² +3x+4).(ax+b) = 4x³ +13x²+19x+4
=> a=4, b=1
Similarly,
Q= (x² +3x+4).(2x+1) = 2x³+5x²+5x -4

View original post

Amateur vs Professional

tomcircle's avatarMath Online Tom Circle

Amateur versus Professional

1. Amateur is at liberty to study only those things he likes.
2. Professional must also study what he doesn’t like.
3. Conclusion: Most famous theorems are found by Amateurs.

Examples:
Fermat = Judge (Number Theory, Probabilty),
Venn = Anglican Pastor (Venn Diagram),
Ramanujan = Railway clerk (Number Theory)
Cayley = Lawyer (Group),
Leibniz = Diplomat (Calculus, Binary 0 & 1)

View original post

Arabic Problem

tomcircle's avatarMath Online Tom Circle

This is an old arabic problem:

An old man had 11 horses. When he died, his will stated the following distribution to his 3 sons:
1/2 gives to the eldest son,
1/4 for 2nd son,
1/6 for 3rd son.

Find: how many horses each son gets ?

There are 2 methods to solve: first using simple arithmetic trick without knowing the theory behind; the second method will explain the first method “from an advanced standpoint” – Number Theory (Felix Klein’s Vision )

1) Arithmetic trick:

11 is odd, not divisible by 2, 4 and 6.

Loan 1 horse to the old man:
11+1 = 12

1st son gets: 12/2 = 6 horses
2nd son gets:12/4 = 3 horses
3rd son gets: 12/6 = 2 horses

Total = 6+3+2=11 horses

Up to you if you want the old man to return the 1 loan horse 🙂

Strange! WHY ?

2)

View original post 385 more words

Differentiating under integral

tomcircle's avatarMath Online Tom Circle

Prove: (Euler Gamma Γ Function)
$latex displaystyle n! = int_{0}^{infty}{x^{n}.e^{-x}dx}$

Proof:
∀ a>0
Integrate by parts:

$latex displaystyleint_{0}^{infty}{e^{-ax}dx}=-frac{1}{a}e^{-ax}Bigr|_{0}^{infty}=frac{1}{a}$

∀ a>0
$latex displaystyleint_{0}^{infty}{e^{-ax}dx}=frac{1}{a}$ …[1]

Feynman trick: differentiating under integral => d/da left side of [1]

$latex displaystylefrac{d}{da}displaystyleint_{0}^{infty}e^{-ax}dx= int_{0}^{infty}frac{d}{da}(e^{-ax})dx=int_{0}^{infty} -xe^{-ax}dx$

Differentiate the right side of [1]:
$latex displaystylefrac{d}{da}(frac{1}{a}) = -frac{1}{a^2}$
=>
$latex a^{-2}=int_{0}^{infty}xe^{-ax}dx$

Continue to differentiate with respect to ‘a’:
$latex -2a^{-3} =int_{0}^{infty}-x^{2}e^{-ax}dx$
$latex 2a^{-3} =int_{0}^{infty}x^{2}e^{-ax}dx$
$latex frac{d}{da} text{ both sides}$
$latex 2.3a^{-4} =int_{0}^{infty}x^{3}e^{-ax}dx$


$latex 2.3.4dots n.a^{-(n+1)} =int_{0}^{infty}x^{n}e^{-ax}dx$
Set a = 1
$latex boxed{n!=int_{0}^{infty}x^{n}e^{-x}dx}$ [QED]

Another Example using “Feynman Integration”:

$latex displaystyle text{Evaluate }int_{0}^{1}frac{x^{2}-1}{ln x} dx$

$latex displaystyle text{Let I(b)} = int_{0}^{1}frac{x^{b}-1}{ln x} dx$ ; for b > -1

$latex displaystyle text{I'(b)} = frac{d}{db}int_{0}^{1}frac{x^{b}-1}{ln x} dx = int_{0}^{1}frac{d}{db}(frac{x^{b}-1}{ln x}) dx$

$latex x^{b} = e^{ln x^{b}} = e^{b.ln x} $

$latex frac{d}{db}(x^{b}) = frac{d}{db}e^{b.ln x}=e^{b.ln x}.{ln x}= e^{ln x^{b}}.{ln x}=x^{b}.{ln x}$

$latex text{I'(b)}=int_{0}^{1} x^{b} dx=frac{x^{b+1}}{b+1}Bigr|_{0}^{1} = frac{1}{b+1}$
=>
$latex…

View original post 52 more words

Derivative Meaning

tomcircle's avatarMath Online Tom Circle

The derivative of a function can be thought of as:

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the infinitesimal change in a function.

(2) Symbolic: The derivative of
$Latex x^{n} = nx^{n-1} $
the derivative of sin(x) is cos(x),
the derivative of f°g is f’°g*g’,
etc.

(3) Logical:
$Latex boxed{text{f'(x) = d}} $
$Latex Updownarrow $
$latex forall varepsilon, exists delta, text{ such that }$
$latex boxed{
0 < |Delta x| < delta,
implies
Bigr|frac{f(x+Delta x)-f(x)}{Delta x} – d Bigr| < varepsilon
}$

(4) Geometric: the derivative is the slope of a line tangent to the graph of the function, if the graph has a tangent.

(5) Rate: the instantaneous speed of f(t), when t is time.

(6) Approximation: The derivative of a function is the best linear approximation to the function near a point.

(7)

View original post 86 more words

French Curve

tomcircle's avatarMath Online Tom Circle

The French method of drawing curves is very systematic:

“Pratique de l’etude d’une fonction”

Let f be the function represented by the curve C

Steps:

1. Simplify f(x). Determine the Domain of definition (D) of f;
2. Determine the sub-domain E of D, taking into account of the periodicity (eg. cos, sin, etc) and symmetry of f;
3. Study the Continuity of f;
4. Study the derivative of fand determine f'(x);
5. Find the limits of fwithin the boundary of the intervals in E;
6. Construct the Table of Variation;
7. Study the infinite branches;
8. Study the remarkable points: point of inflection, intersection points with the X and Y axes;
9. Draw the representative curve C.

Example:

$latex displaystyletext{f: } x mapsto frac{2x^{3}+27}{2x^2}$
Step 1: Determine the Domain of Definition D
D = R* = R –…

View original post 453 more words

Prime Secret: ζ(s)

tomcircle's avatarMath Online Tom Circle

Riemann intuitively found the Zeta Function ζ(s), but couldn’t prove it. Computer ‘tested’ it correct up to billion numbers.

$latex zeta(s)=1+frac{1}{2^{s}}+frac{1}{3^{s}}+frac{1}{4^{s}}+dots$

Or equivalently (see note *)

$latex frac {1}{zeta(s)} =(1-frac{1}{2^{s}})(1-frac{1}{3^{s}})(1-frac{1}{5^{s}})(1-frac{1}{p^{s}})dots$

ζ(1) = Harmonic series (Pythagorean music notes) -> diverge to infinity
(See note #)

ζ(2) = Π²/6 [Euler]

ζ(3) = not Rational number.

1. The Riemann Hypothesis:
All non-trivial zeros of the zeta function have real part one-half.

ie ζ(s)= 0 where s= ½ + bi

Trivial zeroes are s= {- even Z}:
s(-2) = 0 =s(-4) =s(-6) =s(-8)…

You might ask why Re(s)=1/2 has to do with Prime number ?

There is another Prime Number Theorem (PNT) conjectured by Gauss and proved by Hadamard and Poussin:

π(Ν) ~ N / log N
ε = π(Ν) – N / log N
The error ε hides in the Riemann Zeta Function’s non-trivial zeroes, which all lie on the Critical…

View original post 195 more words

Golden Ratio Φ

tomcircle's avatarMath Online Tom Circle

A—————C———-B

$Latex frac {AB}{AC} = frac{AC}{CB}$
= 1.61803… = Φ
= $Latex frac {1+ sqrt{5}} {2}$

$Latex frac {6}{5} Phi^2$
= ∏ = 3.14159…

Donald Knuth (Great Computer Mathematician, Stanford University, LaTex inventor) noted the Bible uses a phrase like:
as my Father is to me, I am to you
=> F= Father = line AB
I (or me) = AC
U = You = CB
=> F/I = I/U = Φ
Note: Φ = 1.61803 = – 2 sin 666°

View original post

Alexa Toolbar

The Alexa Toolbar for Internet Explorer

Site: http://www.alexa.com/toolbar

Alexa Toolbar

Features:

  • siteinfoAlexa Traffic Rank: See how popular a website is.
  • relatedRelated Links: Find sites that are similar to the site you are visiting.
  • waybackWayback: See how a site looked in the past.
  • hoturlsHot Pages & Searches: See what’s popular on the web right now.

Alexa Internet, Inc. is a California-based subsidiary company of Amazon.com which provides commercial web traffic data. Founded as an independent company in 1996, Alexa was acquired by Amazon in 1999. Its toolbar collects data on browsing behavior and transmits it to the Alexa website, where it is stored and analyzed, forming the basis for the company’s web traffic reporting. As of 2013, Alexa provides traffic data, global rankings and other information on 30 million websites,[3] and its website is visited by over 8.5 million people monthly. (Wikipedia)

Download the free Alexa Toolbar at: http://www.alexa.com/toolbar

Right brain training

Right brain training

This post is a review on Right brain training, and also a list of resources that one can research on regarding to the popular method of Right brain training.


(Source: https://theconversation.com/mondays-medical-myth-you-can-selectively-train-your-left-or-right-brain-4704)

When it comes to New Year’s resolutions, getting your body in shape often tops the list. But what about your brain?

Top Seller on Amazon.com on Right brain training

If your left or right brain is feeling a little flabby, there’s a wide range of books, teaching programs, and even a Nintendo DS game, purporting to train your left and/or right brain. Indeed, if you Google “right brain training”, you’ll score 53,900,000 hits.

These products are based on the belief that the left and right hemispheres are polar opposites. The left brain is often characterised as your intelligent side: rational, logical and analytic. In contrast the right brain is stereotyped as the “touchy-feely” hemisphere, viewed as artistic, creative, and emotive.

 

Such left and right brain stereotypes have led theorists to suggest that people can be classified according to their “hemisphericity”. If you’re a logical, rational scientist, for instance, you’re left-brained. But creative types, from artists to writers, are right-brained.


Based on my teaching experience, I do find that left-handers (right-brained) students tend to be very creative and usually excel at arts and humanities. However, their math skills can be good too, especially with practice. This shows that the human brain is like a muscle, it gets better with practice and use.

Did you know our Prime Minister Lee Hsien Loong is left-handed too? Barack Obama is also left-handed. Prime Minister Lee Hsien Loong is very good at math, so this should dispel any myths that left-handed students are not good at math.

Barack Obama is left-handed

(Source: http://psychology.about.com/od/cognitivepsychology/a/left-brain-right-brain.htm)

Left Brain vs Right Brain

Understanding the Myth of Left Brain and Right Brain Dominance

The Right Brain

According to the left-brain, right-brain dominance theory, the right side of the brain is best at expressive and creative tasks. Some of the abilities that are popularly associated with the right side of the brain include:

  • Recognizing faces
  • Expressing emotions
  • Music
  • Reading emotions
  • Color
  • Images
  • Intuition
  • Creativity

The Left Brain

The left-side of the brain is considered to be adept at tasks that involve logic, language and analytical thinking. The left-brain is often described as being better at:

  • Language
  • Logic
  • Critical thinking
  • Numbers
  • Reasoning

Also, check out the above Youtube video to check if you are a right-brained or left-brained person!

The Right Brain vs Left Brain test … do you see the dancer turning clockwise or anti-clockwise?

If clockwise, then you use more of the right side of the brain and vice versa.

Most of us would see the dancer turning anti-clockwise though you can try to focus and change the direction; see if you can do it.

LEFT BRAIN FUNCTIONS
uses logic
detail oriented
facts rule
words and language
present and past
math and science
can comprehend
knowing
acknowledges
order/pattern perception
knows object name
reality based
forms strategies
practical
safe

RIGHT BRAIN FUNCTIONS
uses feeling
“big picture” oriented
imagination rules
symbols and images
present and future
philosophy & religion
can “get it” (i.e. meaning)
believes
appreciates
spatial perception
knows object function
fantasy based
presents possibilities
impetuous
risk taking

Right Brain Training Test

Take the test to see if you are right-brained or left-brained!

Any comments or websites about Right brain training to share? Leave your comments below!


Right Brain Training Video

Watch this free brain training video and follow the instructions to increase your brain power. This is an online “game” that really works to improve brain function. You can actually feel it work!

Brain Training can increase your brain power just like weight training can increase your strength. Use this exercise to work out your brain. Bookmark this video and come back and practice with variations on the basics as discussed in the video.


Right Brain Training Books


A Whole New Mind: Why Right-Brainers Will Rule the Future

Right-Brained Children in a Left-Brained World: Unlocking the Potential of Your ADD Child

Drawing on the Right Side of the Brain Workbook: The Definitive, Updated 2nd Edition

What is i^i

tomcircle's avatarMath Online Tom Circle

$Latex i^{i } = 0.207879576…$
$latex i = sqrt{-1}$

If a is algebraic and b is algebraic but irrational then $latex a^b $ is transcendental. (Gelfond-Schneider Theorem)

Since i is algebraic but irrational, the theorem applies.

1. We know
$latex e^{ix}= cos x + i sin x$

Let $latex x = pi/2 $

2. $latex e^{i pi/2} = cos pi/2 + i sin pi/2 $

$latex cos pi/2 = cos 90^circ = 0 $

$latex sin 90^circ = 1 $
$latex i sin 90^circ = (i)*(1) = i $

3. Therefore
$latex e^{ipi/2} = i$
4. Take the ith power of both sides, the right side being $latex i^i $ and the left side =
$latex (e^{ipi/2})^{i}= e^{-pi/2} $
5. Therefore
$latex i^{i} = e^{-pi/2} = .207879576…$

View original post

What is i^i ?

What is i to the power of i?

When you first learnt that \boxed{i=\sqrt{-1}}, you have entered the mysterious world of complex numbers.

A mystifying question would be to ask, what is i to the power of i? Is it a complex number?

The surprising answer is that i^i is a real number! Let us explain it here:

The key step is to use Euler’s formula: \boxed{e^{i\pi}=-1}. This has been voted as the most beautiful equation in mathematics by many people.

Then, i=\sqrt{-1}=(-1)^{1/2}={(e^{i\pi})}^{1/2}=e^{i\pi /2}

Hence, i^i=e^{i^2\pi /2}=e^{-\pi /2}\approx 0.208

It is really amazing that an imaginary number to the power of an imaginary number gives a real number, isn’t it? Leave your comments below!

Mandelbrot Set

O Level Exam Dates

O Level Exam Dates / Exam Schedule

The schedule for O Level Exam Dates is out: http://www.seab.gov.sg/examTimeTable/2014GCEOExamTimetable.pdf

The dates for Maths exams are:

E Maths Paper 1:
21/10/2014 (Tuesday)
14:30-16:30

E Maths Paper 2:
27/10/2014 (Monday)
08:00-10:30

A Maths Paper 1:
28/10/2014 (Tuesday)
08:00-10:00

A Maths Paper 2:
29/10/2014 (Wednesday)
08:00-10:30

The schedule for the first few weeks seems to be quite tight, for instance on 28/10/2014 students would have to handle A Maths Paper 1, and Chemistry Paper 2. (A Maths Paper 1 would be quite exhausting for students on its own)

After the major papers are over, students will have plenty of time to study for their Science Paper 1 (MCQ), with Biology Paper 1 being one of the last papers on 13/11/2014.

Mystery numbers : 370 & 153

tomcircle's avatarMath Online Tom Circle

Just can’t imagine how strange a plane MH370 could just disappear in the air, no explosion, no terrorists (?) although 2 Iranian passengers with stolen passports from an Italian and an Austrain.

Malaysian Flight: MH 370

Departure : Passengers, among them the majority are 153 Chinese, boarded on 3.7 (March 7) around 11 PM at Kuala Lumpur International Airport, disappeared 1 hour later in the air.

http://www.nst.com.my/latest/font-color-red-missing-mh370-font-timeline-of-flight-mh370-1.507516

Just notice 370 is a strange number:

$latex boxed { (3)^{3} + (7)^{3}+ (0)^{3} = 370}$

A lot of mystery numbers have such behaviors when decompose the digit, then each powered by 3, sum them up, you get back the mystery number itself.

Bible Math: 153 St. Peter Fish
[John 21:3-11]
3  So they went out and got into the boat, but that night they caught nothing.
6 He said, ”Throw your net on the right side of the boat and you will find some.” When…

View original post 46 more words

Bayesian Probability Could Help Search MH370 Missing Plane

Math equation could help find missing MH370 plane

Math equation could help find missing Malaysian plane

Source: http://america.aljazeera.com/articles/2014/3/12/mathematical-equationcouldhelpfindmissingmalaysianplane.html

Bayes’ Theorem helped researchers locate Air France Flight 447’s black box in 2011

(Video: How Bayesian Search found the USS Scorpion)

Days after a Malaysian airliner with 239 people aboard went missing en route to Beijing, searchers are still struggling to find any confirmed sign of the plane. Authorities have acknowledged that they didn’t even know what direction it was heading when it disappeared.

As frustrations mount over the failures of the latest technology in the hunt for Malaysia Airlines Flight MH370, some scientists say an 18th-century mathematical equation – used in a previous search for an Air France jetliner’s black box recorder – could help pinpoint the location of the Malaysian plane.

Indonesian Air Force officers examine a map of the Malacca Strait during a briefing following a search operation for the missing Malaysia Airlines Boeing 777, at Suwondo air base in North Sumatra, Indonesia, on Wednesday.

In 2009, Air France Flight 447 en route to Paris from Rio de Janeiro vanished over the Atlantic Ocean, triggering the most expensive and exhaustive search effort ever conducted for a plane. After two years, officials could only narrow the location of the plane’s black box down to an area the size of Switzerland.

But Flight 447’s black box was found in just five days after authorities contacted scientific consultants who applied a centuries-old equation called Bayes’ Theorem.

Read more at: http://america.aljazeera.com/articles/2014/3/12/mathematical-equationcouldhelpfindmissingmalaysianplane.html

What is Bayes’ Theorem

Mathematically, Bayes’ theorem gives the relationship between the probabilities of A and B, P(A) and P(B), and the conditional probabilities of A given B and B given A, P(A|B) and P(B|A). In its most common form, it is: (Wikipedia)

\displaystyle\boxed{P(A|B)=\frac{P(B|A)P(A)}{P(B)}}

(Check out this post on probability formulas to learn more about Probability)

Proof of Bayes’ theorem (Theorem useful for finding MH370 plane)

The proof of Bayes’ theorem is actually relatively simple, the only requirement is to know the formula for conditional probability (Learnt in H1/H2 Maths): \displaystyle \boxed{P(A|B)=\frac{P(A\cap B)}{P(B)}}

From this, we have \displaystyle \boxed{P(A\cap B)=P(A|B)P(B)}

Similarly, \displaystyle \boxed{P(B\cap A)=P(B|A)P(A)}

But since \displaystyle P(A\cap B)=P(B\cap A), we have P(A|B)P(B)=P(B|A)P(A). Dividing throughout by P(B) gives Bayes’ Formula: \displaystyle\boxed{P(A|B)=\frac{P(B|A)P(A)}{P(B)}}

Sincerely wishing that the MH370 plane will be found soon, and hopefully the passengers are still alive.

Also see: Bayesian search theory (Bayesian search theory is the application of Bayesian statistics to the search for lost objects. It has been used several times to find lost sea vessels, for example the USS Scorpion. It also played a key role in the recovery of the flight recorders in the Air France Flight 447 disaster of 2009.)

Fun Math Equals Better Student Participation

Fun Math Equals Better Student Participation

We are glad to have Mr Henry Thompson write a Math article on our blog. 🙂

Guest post by Henry Thompson of DegreeJungle.com:

One significant obstacle that students face when trying to understanding mathematics is that they devote a great deal of their energy to NOT enjoying themselves. Think about it; reading literature is satisfying, if the story is carefully chosen. Holding a conversation about up-to-date events in History, while studying critical analysis, is enjoyable. But, even for math teachers, working out a complex algebraic equation is simply not exciting.

Students rely on their professors to make mathematics convenient and more effortlessly appreciated. Thus, it makes good sense for educators to insert some sort of enjoyment into their math lessons as frequently as possible; particularly, if the diversion includes a little academic theory.

Today’s professors feel that great math education objectives should not only “address the program of study,” but should also present learners with new ways to discover life through the aperture of mathematics.

For this reason, groundbreaking educators around the globe have altered their approach to math education by leaving behind unimportant and boring learning objectives and implementing applicable and appealing math learning inside the classroom.

Yesteryear’s Math Programs Are Uninspiring

If teachers recall their pedagogic theories from college, they’ll remember that many lesson plans contained mathematical calculations at the hub of their programs.

Additionally, the framework in most old-school math textbooks contains terribly-fashioned word problems. It appears that a few textbook publishers hold fundamental challenges in developing math problems that are linked to real life.

Outdated textbooks only pay attention to computational formats as well, leaving out the reasoning that is produced behind the scenes, which is needed to solve math problems.

The folks at Degree Jungle recently talked to some math educators, who located their teaching credential programs through the infamous search engine, to find out what instructors in the twenty-first century should look for when analyzing conventionally-structured math programs.

A Brand-New Strategy for Teaching

A large number of math educators, today, recommend professors seek math learning-systems that guarantee relevancy, instead of those which put math calculations at the center of study; lessons that contain “real-life” relevance will most certainly motivate students to engage more.

The planet contains plenty of fascinating mathematic applications. A tree’s design is a consequence of fractional limb patterns. A tiny shellfish’s cask coils in an exquisite and attractive mathematical design. Profound mathematics dwells in the massive framework of the cosmos. Moreover, all things that folks explore throughout the day contain some sort of mathematical design.

Easy Tips for Applying Mathematics to the Real-World

Below are a handful of tips that educators can work with to help put real-world situations inside their educational math programs:

  • Instead of a worksheet that explains how to spend money, provide students with some real coins to count, or let them visit to the school store.
  • Cooking incorporates proportions and divisions.

Resources for Improving Engagement

Although adding real-world scenarios to math problems plays a vital part in ensuring an entertaining lesson, it is not the only unique educational approach for teaching math. There are countless mathematical strategies short of “real-life” applicability that are, nevertheless, exceptionally appealing.

  • Projecteuler.net delivers a collection of serious mathematical-CIS problems that will demand much more than just mathematical awareness to solve.
  • Fullerton IV Elementary School’s, Integers Across Disciplines, proposes another strategy. Educators there have developed tasks that force students to visit challenging mathematical problems and to discover that math demands practice and patience.
  • Euler’s graph theory using geography assists students in building mathematical tolerance and in discovering ways to conquer frustration. As an included reward, learners will understand that not all math problems have solutions.

A few analysis resources

Analysis resources by Timothy Gowers. Excellent post to revise mathematical analysis.

gowers's avatarGowers's Weblog

This will be my final post associated with the Analysis I course, for which the last lecture was yesterday. It’s possible that I’ll write further relevant posts in the nearish future, but it’s also possible that I won’t. This one is a short one to draw attention to other material that can be found on the web that may help you to learn the course material. It will be an incomplete list: further suggestions would be welcome in the comments below.

A good way to test your basic knowledge of (some of) the course would be to do a short multiple-choice quiz devised by Vicky Neale. If you don’t get the right answer first time for every question, then it will give you an idea of the areas of the course that need attention.

Terence Tao has also created a number of multiple-choice quizzes, some of which are relevant…

View original post 203 more words

Books by Danica McKellar: Actress, Author & Mathematician

Who knew?  Danica McKellar AKA Winnie Cooper on the television hit the Wonder Years, is a published author and mathematician.  She showed up on WGN Noon News the other day promoting her latest book, Kiss My Math.  Just goes to show brains and beauty CAN go together.

Here is the complete list of Books by Danica McKellar (Top Sellers)


  1. Math Doesn’t Suck: How to Survive Middle School Math Without Losing Your Mind or Breaking a Nail

  2. Kiss My Math: Showing Pre-Algebra Who’s Boss

  3. Hot X: Algebra Exposed!

  4. Girls Get Curves: Geometry Takes Shape

The Math of Bitcoins

What is Bitcoin?

Bitcoin is a peer-to-peer payment system and digital currency introduced as open source software in 2009 by developer Satoshi Nakamoto. It is a cryptocurrency, so-called because it uses cryptography to control the creation and transfer of money.[5] Conventionally, the capitalized word “Bitcoin” refers to the technology and network, whereas lowercase “bitcoin” refers to the currency itself.[6] (Wikipedia)

How to mine for Bitcoins using Math?

Source: http://www.huffingtonpost.com/2013/12/02/bitcoin-basics-explained_n_4374031.html

Adding transactions to the block chain and updating a local copy of the block chain is part of a process called mining. At the same time that miners (nodes in the network) are doing the important work of processing and recording transactions, they are also competing in a race.  They are racing to “complete the current block” in order to win bitcoins.

Mining is a serious competition nowadays and it consumes large computing resources.  Although it’s possible to mine on a laptop, the math problems have become hard enough that a laptop’s CPU will likely never complete a block on its own.  The cost of the electricity needed to run the mining software would exceed the return for mining.  Macs and PC are certainly capable of computing hash functions, but are too slow compared to specialized mining hardware that is now available.

Bitcoin mining serves 2 purposes, it creates the general ledger of Bitcoin transaction and provides security.  The miners compile the transactions together into a “block” and add it to the “Bitcoin blockchain.”  If there was a central authority this would need to be done once and verified by that central authority.  However, there is no central authority in Bitcoin and these blocks need to verified in some way.  Many Bitcoin Miners all over the world are compiling these transactions.  At the end of the compilation they essentially print a lottery number at the bottom.  Each miner is doing this millions or billions of times per second. (Source: http://cointext.com/bitcoin-mining-whats-it-all-about/)

Life Skills Learned In Math Class

Life Skills Learned in Math Class: Excellent blog post on how Math is useful in real life.

Whit Ford's avatarMathMaine

One of the hardest questions for many math teachers to answer in a way that is relevant to students is: “why do I need to know this?”  “For the next course you take”, the easiest answer in many cases, does not answer the question that was usually being asked.

My answers to this question obviously depend on the topic being studied at moment, and I don’t have “good” answers for all topics…  but here is my list of key quantitative life skills I learned directly or indirectly from math class, with

View original post 1,971 more words

Jake: Math prodigy proud of his autism (Video)

At age two, Jake Barnett was diagnosed with autism and his future was unclear. Now at age 13, Jake is a college sophomore and a math and science prodigy. Jake says his autism is key to his success. Morley Safer reports.
The Spark: A Mother’s Story of Nurturing, Genius, and Autism (Book by Jake’s mother)

“It seems that for success in science or art a dash of autism is essential.” – Hans Asperger

Donate to St Andrew’s Autism Centre at: http://www.saac.org.sg/partnership_opp.html

Amazing Math Fact: There are always two opposite points on the Earth with the same temperature

There are always two points on opposite sides of the Earth with the exact same temperature. And we can prove that.

Temperature changes continuously. If a and b are on opposite sides of the equator and D(a) = T(a) – T(b) is positive, then D(b) = T(b) – T(a) is negative. That means there must be some point x on the equator where D(x) = 0. At that point the two opposite sides are the same temperature.

Mathematicians call this the Intermediate Value Theorem which means if there is a continuous function that changes from of a positive value to a negative value (or the other way around) then it must, at some point, pass through zero.

Singapore International School popular among Asian celebrities

Singapore International School popular among Asian celebs, Hong Kongers

Source: http://sg.news.yahoo.com/singapore-international-school-popular-among-asian-celebs–hong-kongers-023523503.html

In recent years, many Asian celebrities have relocated to Singapore, citing its lack of paparazzi culture and social stability.

For some of these stars who are also parents, Singapore’s world-class education system was also an important factor in making the move.

For example, Chinese action star Jet Li, who is also a Singapore citizen, has once said that he moved here for his children to get a good bilingual education with equal emphasis on English and Chinese.

Jet Li as Huo Yuanjia

While Hong Kong actress Cecilia Cheung, who relocated to Singapore last year, has sent her two sons to an international school in Singapore, she also sang praises of the country’s education system.

File:Cecilia Cheung 2012.jpg
Cecilia Cheung

Rumour has it that Hong Kong actor Francis Ng, who has a Singaporean wife, also intends to send his son to a local school in Singapore.

Francis Ng

Read more at: http://sg.news.yahoo.com/singapore-international-school-popular-among-asian-celebs–hong-kongers-023523503.html

 

Singapore Free Education?

Source: http://www.oyetimes.com/news/asia/59957-free-education-the-debate-over-singapore-budget-2014

Nominated MP Laurence Lien debated over the ever increasing managing costs of the Singaporeans. He stated that lower costs would allow lower income to seem enough for a small family. He tried to convince the government to provide free education for children between three and eighteen years of age. “Tertiary education fees can be chargeable in the form of a loan whose repayment is a proportion of what the graduate actually earns in the workforce. Those going into lower paid professions, like in the non-profit sector, can receive loan forgiveness if they are unable to make full payment at the end of their loan tenure.”

Read more at: http://www.oyetimes.com/news/asia/59957-free-education-the-debate-over-singapore-budget-2014

Midpoints, midpoints, everywhere!

Interesting post about Quadrilateral Midpoint Theorem (QMT), which states that if you connect, in order, the midpoints of the four sides of a quadrilateral–any quadrilateral–even if the quadrilateral is concave or if its sides cross–the resulting figure will always be a parallelogram.

chrisharrow's avatarCAS Musings

I didn’t encounter the Quadrilateral Midpoint Theorem (QMT) until I had been teaching a few years.  Following is a minor variation on my approach to the QMT this year plus a fun way I leveraged the result to introduce similarity.

In case you haven’t heard of it, the surprisingly lovely QMT says that if you connect, in order, the midpoints of the four sides of a quadrilateral–any quadrilateral–even if the quadrilateral is concave or if its sides cross–the resulting figure will always be a parallelogram.

Parallel1

Parallel2

Parallel3

This is a cool and easy property to explore on any dynamic geometry software package (GeoGebra, TI-Nspire, Cabri, …).

SKETCH OF THE TRADITIONAL PROOF:  The proof is often established through triangle similarity:  Whenever you connect the midpoints of two sides of a triangle, the resulting segment will be parallel to and half the length of the triangle’s third side…

View original post 547 more words

Deepest condolences to the loved ones of Math major Philip Wood on board Malaysia Airlines Flight MH370

Deepest condolences to the loved ones of Math major Philip Wood on board Malaysia Airlines Flight MH370

Source: http://edition.cnn.com/2014/03/08/world/asia/malaysia-airlines-plane-passengers/

“We extend our deepest condolences to the loved ones of those on board Malaysia Airlines Flight MH370,” U.S. State Department spokeswoman Jen Psaki said. “Officials from the U.S. Embassies in Kuala Lumpur and Beijing are in contact with the individuals’ families. Out of respect for them, we are not providing additional information at this time.”

Among them is Philip Wood, who graduated from Oklahoma Christian University in 1985 according to school spokeswoman Risa Forrester. He earned a bachelor of science degree, concentrating in math and computer science, and belonged to the Delta Gamma Sigma service organization, Forrester said.

On Oklahoma Christian’s Facebook page, one woman lamented the “heartbreaking news” while a man remembered Wood as “gentle, kind, had great taste in music and was a wonderful artist.”

“Philip Wood was a man of God, a man of honor and integrity. His word was gold,” his family said in a statement. “Incredibly generous, creative and intelligent, Phil cared about people, his family, and above all, Christ.

Malaysia Airlines is asking for prayers from around the world for Flight 370.

10 Biggest Mathematical Disasters in the World

Interesting Blog Post about the 10 Biggest Mathematical Disasters in the World

mathspig's avatarMathspig Blog

tulip graph Correction The millennium bug or the Y2K bug was going to cause planes to fall from the sky, bank accounts to be wiped out, electricity grids to cease functioning, trains to crash, cars to collide as stop lights stopped functioning, life support units to malfunction and computers to crash around the globe. For years leading up to midnight on New Years eve 1999 consults were paid extraordinary amounts of money to solve the problem.  When the clock ticked over to 1 st Jan 2000 nothing much happened. It was, indeed, a non-event, an error in logic. y2k digyourowngrave.com  (Pic from, appropriately, digyourowngrave.com)  

y2k2The Maths Error: Guessing the Answer.

Computer programmers represented the year in the date of many programs using two digits but claimed logical errors would arise upon “rollover” from x99 to x00.

While consultants claimed their advice saved the world from catastrophe countries that spent very little on the…

View original post 42 more words