Plato Solids

Math Online Tom Circle

Why only 5 Plato solids ?

Plato Solid is: Regular Polyhedron 正多面体

  • Each Face is n-sided polygon
  • Each Vertex is common to m-edges (m ≥ 3)

Only 5 solids possible:
Tetrahedron (n,m)=(3,3) 正四面体platonic_solids
Hexahedron (or Cube) (n,m)=(4,3) 正六面体
Octahedron  (n,m)=(3,4)正八面体
Dodecahedron  (n,m)=(5,3)正十二面体
Icosahedron  (n,m)=(3,5)正二十面体

Proof:
Since each Edge (E) is common to 2 Faces (F)
=> n Faces counts double the edges
nF = 2E …(1)

Since each Vertex has m Edges, each Edge has 2 end-points (Vertex).
=> m Vertex counts double the edges
mV = 2E …(2)

(1) : E= n/2 F
(2): V= 2/m. E = n/m. F
(1) & (2) into Euler Formula: V -E + F = 2
(n/m. F) – (n/2.F) + F = 2
F.(2m + 2n – mn) = 4m

Since F>0 , m>0
=> (2m + 2n – mn) >0
=> – (mn -2n -2m) >…
=> (mn -2n -2m) <…
=>…

View original post 154 more words

Author: tomcircle

Math amateur

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.