## A Maths Tuition: Trigonometry Formulas

Many students find Trigonometry in A Maths challenging.

This is a list of Trigonometry Formulas that I compiled for A Maths. Students in my A Maths tuition class will get a copy of this, neatly formatted into one A4 size page for easy viewing.

A Maths: Trigonometry Formulas $\mathit{cosec}x=\frac{1}{\sin x}$ $\mathit{sec}x=\frac{1}{\cos x}$ $\cot x=\frac{1}{\tan x}$ $\tan x=\frac{\sin x}{\cos x}$ $y=\sin x$  $y=\cos x$  $y=\tan x$  $\frac{d}{\mathit{dx}}(\sin x)=\cos x$ $\frac{d}{\mathit{dx}}(\cos x)=-\sin x$ $\frac{d}{\mathit{dx}}(\tan x)=\mathit{sec}^{2}x$ $\int {\sin x\mathit{dx}}=-\cos x+c$ $\int \cos x\mathit{dx}=\sin x+c$ $\int \mathit{sec}^{2}x\mathit{dx}=\tan x+c$

Special Angles: $\cos 45^\circ=\frac{1}{\sqrt{2}}$ $\cos 60^\circ=\frac{1}{2}$ $\cos 30^\circ=\frac{\sqrt{3}}{2}$ $\sin 45^\circ=\frac{1}{\sqrt{2}}$ $\sin 60^\circ=\frac{\sqrt{3}}{2}$ $\sin 30^\circ=\frac{1}{2}$ $\tan 45^\circ=1$ $\tan 60^\circ=\sqrt{3}$ $\tan 30^\circ=\frac{1}{\sqrt{3}}$ $y=a\sin (\mathit{bx})+c$ Amplitude: $a$; Period: $\frac{2\pi }{b}$ $y=a\cos (\mathit{bx})+c$ Amplitude: $a$; Period: $\frac{2\pi }{b}$ $y=a\tan (\mathit{bx})+c$ Period: $\frac{\pi }{b}$ $\pi \mathit{rad}=180^\circ$

Area of $\triangle \mathit{ABC}=\frac{1}{2}\mathit{ab}\sin C$

Sine Rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine Rule: $c^{2}=a^{2}+b^{2}-2\mathit{ab}\cos C$