Acceleration = d/dx (1/2 v^2)

Acceleration = \frac{d}{dx}(\frac{1}{2}v^2):

\displaystyle \boxed{a=\frac{d^2x}{dt^2}=\frac{dv}{dt}=v\frac{dv}{dx}=\frac{d}{dx}(\frac{1}{2}v^2)},

where x is displacement, v is velocity, and a is acceleration.

Proof:
\begin{aligned}  a&=\frac{dv}{dt} \text{(this is definition of acceleration)}\\  &=\frac{dv}{dx}\cdot\frac{dx}{dt} \text{(chain rule)}\\  &=v\frac{dv}{dx}.  \end{aligned}

Also,
\begin{aligned}  \frac{d}{dx}(\frac{1}{2}v^2)&=v\frac{dv}{dx}. \text{(chain rule)}  \end{aligned}

Therefore, a=\frac{d}{dx}(\frac{1}{2}v^2).

Advertisement

Author: mathtuition88

Math and Education Blog

2 thoughts on “Acceleration = d/dx (1/2 v^2)”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: