Rigorous Calculus: ε-δ Analysis

Math Online Tom Circle

Rigorous Analysis epsilon-delta (ε-δ)
Cauchy gave epsilon-delta the rigor to Analysis, Weierstrass ‘arithmatized‘ it to become the standard language of modern analysis.

1) Limit was first defined by Cauchy in “Analyse Algébrique” (1821)

2) Cauchy repeatedly used ‘Limit’ in the book Chapter 3 “Résumé des Leçons sur le Calcul infinitésimal” (1823) for ‘derivative’ of f as the limit of

$latex frac{f(x+i)-f(x)}{i}$  when i ->…

3) He introduced ε-δ in Chapter 7 to prove ‘Mean Value Theorem‘: Denote by (ε , δ) 2 small numbers, such that 0< i ≤ δ , and for all x between (x+i) and x,

f ‘(x)- ε < $latex frac{f(x+i)-f(x)}{i}$ < f'(x)+ ε

4) These ε-δ Cauchy’s proof method became the standard definition of Limit of Function in Analysis.

5) They are notorious for causing widespread discomfort among future math students. In fact, when it…

View original post 92 more words

Author: tomcircle

Math amateur

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.