## Useful Theorem in Introductory Ring Theory

Something interesting I realised in my studies in Math is that certain theorems are more “useful” than others. Certain theorems’ sole purpose seem to be an intermediate step to prove another theorem and are never used again. Other theorems seem to be so useful and their usage is everywhere.

One of the most “useful” theorems in basic Ring theory is the following:

Let $R$ be a commutative ring with 1 and $I$ an ideal of $R$. Then

(i) $I$ is prime iff $R/I$ is an integral domain.

(ii) $I$ is maximal iff $R/I$ is a field.

With this theorem, the following question is solved effortlessly:

Let $R$ be a commutative ring with 1 and let $I$ and $J$ be ideals of $R$ such that $I\subseteq J$.

(i) Show that $J$ is a prime ideal of $R$ iff $J/I$ is a prime ideal of $R/I$.

(ii) Show that $J$ is a maximal ideal of $R$ iff $J/I$ is a maximal ideal of $R/I$.

Sketch of Proof of (i): $J$ is a prime ideal of $R$ iff $R/J$ is an integral domain. ( $R/J\cong \frac{R/I}{J/I}$ by the Third Isomorphism Theorem. ) $\iff$ $J/I$ is a prime ideal of $R/I$.

(ii) is proved similarly.

Advertisements ## About mathtuition88

http://mathtuition88.com
This entry was posted in Algebra and tagged , . Bookmark the permalink.

### 1 Response to Useful Theorem in Introductory Ring Theory

1. chinoiseries2014 says:

This site uses Akismet to reduce spam. Learn how your comment data is processed.