Smooth/Differentiable Manifold

Smooth Manifold
A smooth manifold is a pair (M,\mathcal{A}), where M is a topological manifold and \mathcal{A} is a smooth structure on M.

Topological Manifold
A topological n-manifold M is a topological space such that:
1) M is Hausdorff: For every distinct pair of points p,q\in M, there are disjoint open subsets U,V\subset M such that p\in U and q\in V.
2) M is second countable: There exists a countable basis for the topology of M.
3) M is locally Euclidean of dimension n: Every point of M has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^n. For each p\in M, there exists:
– an open set U\subset M containing p;
– an open set \widetilde{U}\subset\mathbb{R}^n; and
– a homeomorphism \varphi: U\to\widetilde{U}.

Smooth structure
A smooth structure \mathcal{A} on a topological n-manifold M is a maximal smooth atlas.

Smooth Atlas
\mathcal{A}=\{(U_\alpha,\varphi_\alpha)\}_{\alpha\in J} is called a smooth atlas if M=\bigcup_{\alpha\in J}U_\alpha and for any two charts (U,\varphi), (V,\psi) in \mathcal{A} (such that U\cap V\neq\emptyset), the transition map \displaystyle \psi\circ\varphi^{-1}:\varphi(U\cap V)\to\psi(U\cap V) is a diffeomorphism.

Source:
Introduction to Smooth Manifolds (Graduate Texts in Mathematics, Vol. 218) by John Lee

Differentiable Manifolds (Modern Birkhäuser Classics) by Lawrence Conlon

These two books are highly recommended books for Differentiable Manifolds. John Lee’s book has almost become the standard book. Its style is similar to Hatcher’s Algebraic Topology, it can be wordy but it has detailed description and explanation of the ideas, so it is good for those learning the material for the first time.

Lawrence Conlon’s book is more concise, and has specialized chapters that link to Algebraic Topology.

Advertisements

About mathtuition88

http://mathtuition88.com
This entry was posted in math and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s