Vector Space has a total of 8 Axioms, most of which are common-sense, but can still pose a challenge for memorizing by heart.
I created a mnemonic “MAD” which helps to remember them.
M for Multiplicative Axioms:
(Scalar Multiplication identity)
(Associativity of Scalar Multiplication)
A for Additive Axioms: (Note that these are precisely the axioms for an abelian group)
(Commutativity)
(Associativity for Vector Addition)
(Existence of Additive Inverse)
(Additive Identity)
D for Distributive Axioms:
(Distributivity of vector sums)
(Distributivity of scalar sums)
For Group, “CAN I?” is the memorize trick: 群
C = Closure
A = Associalize
N = Neutral element (Identity, e)
I = Inverse
Less 50% discount => “CA” for Semi-Group 半群
“CAN” => Mono’I’d (no ‘I’: Group with no Inverse) 么群 Monoid
LikeLiked by 2 people
sorry for spelling, A = Associativity
LikeLiked by 2 people