Simple Algebra does not imply Semisimple Algebra

The terminology “semisimple” algebra suggests a generalization of simple algebras, but in fact not all simple algebras are semisimple! (Exercises 1 & 5 in Richard Pierce’s book contain examples)

A simple module is a semisimple module is true though.

Proposition: For a simple algebra A, the following conditions are equivalent:

(i) A is semisimple;

(ii) A is right Artinian;

(iii) A has a minimal right ideal.

Thus to find a algebra that is simple but not semisimple, one can look for an example that is not right Artinian.

Advertisements

About mathtuition88

http://mathtuition88.com
This entry was posted in math and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s