Motivation of Simplicial Sets

A simplicial set is a purely algebraic model representing topological spaces that can be built up from simplices and their incidence relations. This is similar to the method of CW complexes to modeling topological spaces, with the critical difference that simplicial sets are purely algebraic and do not carry any actual topology.

To return back to topological spaces, there is a geometric realization functor which turns simplicial sets into compactly generated Hausdorff spaces. A topological space X is said to be compactly generated if it satisfies the condition: A subspace A is closed in X if and only if A\cap K is closed in K for all compact subspaces K\subseteq X. A compactly generated Hausdorff space is a compactly generated space which is also Hausdorff.


About mathtuition88
This entry was posted in math and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.