Zmn/Zm isomorphic to Zn

The following is a simple proof of why \mathbb{Z}_{mn}/\mathbb{Z}_m\cong\mathbb{Z}_n.

For instance \mathbb{Z}_6/\mathbb{Z}_2\cong\mathbb{Z}_3. Note that the tricky part is that \mathbb{Z}_2 is not actually the usual {0,1}, but rather {0,3} (considered as part of \mathbb{Z}_6). Hence the elements of \mathbb{Z}_6/\mathbb{Z}_2 are {0,3}, {1, 4}, {2, 5}, which can be seen to be isomorphic to \mathbb{Z}_3.

A sketch of a proof is as follows. Consider \phi:\mathbb{Z}_{mn}/\mathbb{Z}_m\to \mathbb{Z}_n, where \mathbb{Z}_m=\{0,n,2n,\dots,(m-1)n\}, defined by \phi (a+\mathbb{Z}_m)=a.

We may check that it is well-defined since if a+\mathbb{Z}_m=a'+\mathbb{Z}_m, then a\equiv a' \pmod n, and thus \phi (a+\mathbb{Z}_m)=\phi (a'+\mathbb{Z}_m).

It is a fairly straightforward to check it is a homomorphism, \begin{aligned}\phi (a+\mathbb{Z}_m+a'+\mathbb{Z}_m)&=\phi (a+a'+\mathbb{Z}_m)\\    &=a+a'\\    &=\phi (a+\mathbb{Z}_m)+\phi(a'+\mathbb{Z}_m)    \end{aligned}

Injectivity is clear since \ker \phi=0+\mathbb{Z}_m, and surjectivity is quite clear too.

Hence, this ends the proof. 🙂

Do check out some Recommended Books on Undergraduate Mathematics, and also download the free SG50 Scientific Pioneers Ebook, if you haven’t already.


About mathtuition88
This entry was posted in math and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s