Fermat’s Little Theorem Co-prime Condition

Math Online Tom Circle

It is confusing for students regarding the two forms of the Fermat’s Little Theorem (which is the generalization of the ancient Chinese Remainder Theorem):

General: For any number a

$latex boxed { a^p equiv a mod p, forall a}$

We get,
$latex a^{p} – a equiv 0 mod p$
$latex a. (a^{(p-1)} -1) equiv 0 mod p$
$latex p mid a.(a^{(p-1)} -1)$
If (a, p) co-prime, or g.c.d.(a, p)=1,
then p cannot divide a,
thus
$latex p mid (a^{(p-1)} -1)$
$latex a^{(p-1)} -1 equiv 0 mod p$

Special: g.c.d. (a, p)=1

$latex boxed {a^{(p-1)} equiv 1 mod p, forall a text { co-prime p}}$

View original post

Advertisements

About tomcircle

Math amateur
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s