Fermat’s Little Theorem Co-prime Condition

tomcircle's avatarMath Online Tom Circle

It is confusing for students regarding the two forms of the Fermat’s Little Theorem (which is the generalization of the ancient Chinese Remainder Theorem):

General: For any number a

$latex boxed { a^p equiv a mod p, forall a}$

We get,
$latex a^{p} – a equiv 0 mod p$
$latex a. (a^{(p-1)} -1) equiv 0 mod p$
$latex p mid a.(a^{(p-1)} -1)$
If (a, p) co-prime, or g.c.d.(a, p)=1,
then p cannot divide a,
thus
$latex p mid (a^{(p-1)} -1)$
$latex a^{(p-1)} -1 equiv 0 mod p$

Special: g.c.d. (a, p)=1

$latex boxed {a^{(p-1)} equiv 1 mod p, forall a text { co-prime p}}$

View original post

Unknown's avatar

Author: tomcircle

Math amateur

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.