http://www.amazon.com/gp/aw/d/0983951349/ref=pd_aw_cart_recs_1?pi=SL500_SY115

Chapter 3 on Rotation is excellent ! He combines Analytic Geometry, Linear Algebra (Matrix) , and Physics (Rotation) into “one same thing” to show the beauty of Mathematics:

The following matrix represents a rotation $latex rho (theta)$ by an angle $latex theta$:

$latex begin{pmatrix}

cos {theta} & -sin {theta}

sin {theta} & cos {theta}

end{pmatrix}

$

Rotate by $latex 2theta $ will be:

$latex begin{pmatrix}

cos {2theta} & -sin {2theta}

sin {2theta} & cos {2theta}

end{pmatrix}

$

Which is equivalent to rotate 2 successive angle of $latex theta $:

$latex rho (theta) .rho (theta) = rho^2 (theta) $:

$latex begin{pmatrix}

cos {theta} & -sin {theta}

sin {theta} & cos {theta}

end{pmatrix}^2

$

= $latex begin{pmatrix}

cos {theta} & -sin {theta}

sin {theta} & cos {theta}

end{pmatrix} $ $latex begin{pmatrix}

cos {theta} & -sin {theta}

sin {theta} & cos {theta}

end{pmatrix}$

= $latex begin{pmatrix}

cos ^2 {theta} – sin ^2…

View original post 47 more words