Proving Quotient Rule using Product Rule

Proving Quotient Rule using Product Rule

This is how we can prove Quotient Rule using the Product Rule.

First, we need the Product Rule for differentiation: \displaystyle\boxed{\frac{d}{dx}(uv)=u\frac{dv}{dx}+v\frac{du}{dx}}

Now, we can write \displaystyle\frac{d}{dx}(\frac{u}{v})=\frac{d}{dx}(uv^{-1})

Using Product Rule, \displaystyle \frac{d}{dx}(uv^{-1})=u(-v^{-2}\cdot\frac{dv}{dx})+v^{-1}\cdot(\frac{du}{dx})

Simplifying the above will give the Quotient Rule! :

\displaystyle\boxed{\frac{d}{dx}(\frac{u}{v})=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}}

You can also try proving Product Rule using Quotient Rule!

Author: mathtuition88

https://mathtuition88.com/

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.