Yitang Zhang’s Santa Barbara Beach Walk

Professor Yitang Zhang is a famous Math professor who made important progress in number theory (Twin Prime Conjecture). Most strikingly, he made this progress in his fifties, which is kind of rare in the mathematical world.

Source: Quanta Magazine

Yitang Zhang on the beach adjoining the University of California, Santa Barbara, after scratching a function in the sand related to his current work on the Landau-Siegel zeros problem.

As an adolescent during the Cultural Revolution in China, Yitang Zhang wasn’t allowed to attend high school. Later, in his 30s, he worked odd jobs in the United States and sometimes slept in his car. But Zhang always believed he would solve a great math problem someday. Still, despite becoming one of China’s top math students and completing his doctorate at Purdue University in Indiana, for seven years Zhang could not find work as a mathematician. At one point, he worked at a friend’s Subway sandwich restaurant to pay the bills.

“I was not lucky,” Zhang, who is both incredibly reserved and self-confident, told Quanta in a 2015 interview.

At 44, after finally being hired to teach math at the University of New Hampshire, he turned his attention to number theory, a subject he had loved since childhood. He analyzed problems in his head during long walks near his home and the university. In his 50s, well past what many mathematicians consider their prime years (indeed, the Fields Medal is awarded to mathematicians under the age of 40), he began trying to prove the twin primes conjecture, which predicts an infinite number of prime number pairs that have a difference of two, such as 5 and 7, 29 and 31, and 191 and 193. No one had been able to prove this in over 150 years, and top number theorists could not even prove the existence of a bounded prime gap of any finite size.

In 2013, at 58, Zhang published his proof of a bounded prime gap below 70 million in one of the world’s most prestigious journals, the Annals of Mathematics. The paper’s referees wrote that Zhang, who had been unknown to established mathematicians, had proved “a landmark theorem in the distribution of prime numbers.”

Read more at: Quanta

The important thing is to keep thinking

This is a really inspirational story to me. “The important thing is to keep thinking.”

keep thinking

Source: http://www.reigndesign.com/blog/doing-it-with-twins-the-twin-prime-conjecture/

Now, I want you to imagine for a moment that you live in the United States, to be exact: New Hampshire. You’re a recruiter at the University of New Hampshireand your job is to hire the best people to become professors and lecturers.

Now suppose one day you get an application from this guy, Zhang Yitang, a 50-something mathematician. Since getting his PhD from Purdue, he’s struggled to find an academic job, working as a motel clerk and a Subway sandwich maker. I wouldn’t blame you if you passed over him.

It turns out if you had skipped Zhang Yitang, you’d have been making a big mistake, because a few weeks ago this 57-year old Chinese mathematician made headlines around the world when he proved a result in number theory which has been challenging mathematicians for years.


Featured book:


How Not to Be Wrong: The Power of Mathematical Thinking

The Freakonomics of matha math-world superstar unveils the hidden beauty and logic of the world and puts its power in our hands

The math we learn in school can seem like a dull set of rules, laid down by the ancients and not to be questioned. In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do–the whole world is shot through with it.

Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?

How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman–minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.

Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.