中国剩余定理CRT (Chinese Remainder Theorem)
X ≡ 2 (mod 3)
X ≡ 3 (mod 5)
X ≡ 2 (mod 7)
Solve X?
明. 程大位 “算法统宗” (1593)
3人同行70稀
5树梅花21支
7子团圆半个月(15)
除百零五(105)便得知
Let remainders:
$Latex r_3=2, r_5=3, r_7=2$
$Latex r= r_3.70+ r_5.21 + r_7.15 (mod 3.5.7)$
r= 2.70 +3.21 +2.15 (mod 105)
r= 140 +63 +30 (mod 105)
r= 233 (mod 105)
$latex r= 23 = x_{min}$
or X= 23 +105Z (23 + multiples of 105)
——————————————-
CRT: Why 3:70, 5:21, 7:15
X ≡ 2 (mod 3)
X ≡ 3 (mod 5)
X ≡ 2 (mod 7)
1) Find A such that
A ≡ 1 (mod 3)
A ≡ 0 (mod 5)
A ≡ 0 (mod 7)
=> 5|A, 7|A => 35 |A
A=35, 70 …
70 ≡ 1 (mod 3)
=> 70×2 ≡ 2 (mod 3)
2) Find B s.t.:
B ≡ 0 (mod 3)
B ≡ 1 (mod 5)
B ≡…
View original post 181 more words