# Trigonometric Identities and Differential Equations

Trigonometric Identities \begin{aligned} \sin(A\pm B)&=\sin A\cos B\pm\cos A\sin B\\ \cos(A\pm B)&=\cos A\cos B\mp\sin A\sin B\\ \tan(A\pm B)&=\frac{\tan A\pm \tan B}{1\mp \tan A\tan B} \end{aligned} \begin{aligned} \sin A+\sin B&=2\sin\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)\\ \sin A-\sin B&=2\cos\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B)\\ \cos A+\cos B&=2\cos\frac{1}{2}(A+B)\cos\frac{1}{2}(A-B)\\ \cos A-\cos B&=-2\sin\frac{1}{2}(A+B)\sin\frac{1}{2}(A-B) \end{aligned}

Reduction to Separable Form
Equations of the form $y'=g(\frac{y}{x}).$
Set $\frac{y}{x}=v$. Then $y=vx$ and $y'=v+xv'$. Thus the original equation becomes $v+xv'=g(v)$ which is separable.

Linear Change of Variable $y'=f(ax+by+c)$ can be solved by setting $u=ax+by+c$.

Newton’s Law of Cooling
Rate of change of temperature of an object ( $\frac{dT}{dt}$) is proportional to the difference between its own temperature ( $T$) and the ambient temperature ( $T_\text{env}$). That is, $\frac{dT}{dt}=-k(T-T_\text{env})$. ## Author: mathtuition88

http://mathtuition88.com

This site uses Akismet to reduce spam. Learn how your comment data is processed.