Absolute Continuity of Lebesgue Integral

The following is a wonderful property of the Lebesgue Integral, also known as absolute continuity of Lebesgue Integral. Basically, it means that whenever the domain of integration has small enough measure, then the integral will be arbitrarily small.

Suppose f is integrable.
Given \epsilon>0, there exists \delta>0 such that for all measurable sets B\subseteq E with |B|<\delta, |\int_B f\,dx|<\epsilon.

Define A_k=\{x\in E: \frac 1k\leq|f(x)|<k\} for k\in\mathbb{N}. Each A_k is measurable and A_k\nearrow A:=\bigcup_{k=1}^\infty A_k. Note that \displaystyle \int_E |f|=\int_{\{f=0\}}|f|+\int_A |f|+\int_{\{f=\infty\}}|f|=\int_A |f|.

Let f_k=|f|\chi_{A_k}. Then \{f_k\} is a sequence of non-negative functions such that f_k\nearrow |f|\chi_A. By Monotone Convergence Theorem, \lim_{k\to\infty}\int_E f_k=\int_E |f|\chi_A, that is, \displaystyle \lim_{k\to\infty}\int_{A_k}|f|\,dx=\int_A |f|\,dx=\int_E |f|\,dx.

Let N>0 be sufficiently large such that \int_{E\setminus A_N}|f|\,dx<\epsilon/2.

Let \delta=\frac{\epsilon}{2N}, and suppose |B|<\delta. Then
\begin{aligned}  |\int_B f\,dx|&\leq\int_B |f|\,dx\\  &=\int_{(E\setminus A_N)\cap B}|f|\,dx+\int_{A_N\cap B}|f|\,dx\\  &\leq\int_{E\setminus A_N}|f|\,dx+\int_{A_N\cap B}N\,dx\\  &<\epsilon/2+N\cdot|A_N\cap B|\\  &\leq\epsilon/2+N\cdot|B|\\  &<\epsilon/2+N\cdot\frac{\epsilon}{2N}\\  &=\epsilon.  \end{aligned}

Author: mathtuition88


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.