Differentiable Manifold

Differentiable manifold

An n-dimensional (differentiable) manifold M^n is a Hausdorff topological space with a countable (topological) basis, together with a maximal differentiable atlas.

This atlas consists of a family of charts \displaystyle h_\lambda: U_\lambda\to U'_\lambda\subset\mathbb{R}^n, where the domains of the charts, \{U_\lambda\}, form an open cover of M^n, the U'_\lambda are open in \mathbb{R}^n, the charts (local coordinates) h_\lambda are homeomorphisms, and every change of coordinates \displaystyle h_{\lambda\mu}=h_\mu\circ h_\lambda^{-1} is differentiable on its domain of definition h_\lambda(U_\lambda\cap U_\mu).


Source: Representations of Compact Lie Groups (Graduate Texts in Mathematics)


About mathtuition88

This entry was posted in math and tagged , . Bookmark the permalink.

One Response to Differentiable Manifold

  1. Pingback: Differentiable Manifold — Singapore Maths Tuition | Mathpresso

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s