Let G be a p-group and H a nontrivial normal subgroup. Prove that is nontrivial.
Let G act on H by conjugation. Since H is a normal subgroup, this is a well-defined group action since for all
.
Let .
.
Therefore we have where
.
By the Orbit-Stabilizer Theorem,
Let . By Lagrange’s Theorem,
. Since
, therefore
.
Hence, .
Note that
Therefore . Since
, this implies that
. Therefore
.
Do check out some of our recommended Singapore Math books here!