Relationship-Mapping-Inverse (RMI)
(invented by Prof Xu Lizhi 徐利治 中国数学家 http://baike.baidu.com/view/6383.htm)
Find Z = a*b
By RMI Technique:
Let f Homomorphism: f(a*b) = f(a)+f(b)
Let f = log
log: R+ –> R
=> log (a*b) = log a + log b
1. Calculate log a (=X), log b (=Y)
2. X+Y = log (a*b)
3. Find Inverse log (a*b)
4. ANSWER: Z = a*b
Prove:
$latex sqrt{2}^{sqrt{2}^{sqrt{2}}}= 2$
1. Take f = log for Mapping:
$latex logsqrt{2}^{sqrt{2}^{sqrt{2}}} $
$latex = sqrt{2}logsqrt{2}^{sqrt{2}}$
$latex = sqrt{2}sqrt{2}logsqrt{2} $
$latex = 2logsqrt{2} $
$latex = log (sqrt{2})^2 $
$latex = log 2$
2. Inverse of log (bijective):
$latex log sqrt{2}^{sqrt{2}^{sqrt{2}}}= log 2$
$latex sqrt{2}^{sqrt{2}^{sqrt{2}}}= 2$