From Durian to Group Theory

tomcircle's avatarMath Online Tom Circle

Durian & Group

The Nature applies Group Theory to the King of fruits : Durian.
Look at the kernels, there are more than one, each kernel partitions the Durian Group into several similar sections (which you can pull them apart ).
Those durians which have no kernel (jiu-jee) but meat are excellent – they are SIMPLE.
Eating one kernel (Normal Subgroup) is enough to know whether the Durian (Group) is D24 or D18 type.
Bon appétit !
Knowing the kernel 核of a fruit will allow biologists to understand the whole fruit.
In Group, a kernel of group homomorphism is a Normal subgroup, hence will let us know the whole group.
Normal subgroup is the important essence revealing the whole group.
First, you must realize what a Group is? Group is a set with an operation (Transformation) acting on its elements such that
“CAN I” –
C: closed
A: Associative

View original post 235 more words

Unknown's avatar

Author: tomcircle

Math amateur

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.