There are countless situations in mathematics where it helps to expand a function as a power series. Therefore, Taylor’s theorem, which gives us circumstances under which this can be done, is an important result of the course. It is also the one result that I was dreading lecturing, at least with the Lagrange form of the remainder, because in the past I have always found that the proof is one that I have not been able to understand properly. I don’t mean by that that I couldn’t follow the arguments I read. What I mean is that I couldn’t reproduce the proof without committing a couple of things to memory, which I would then forget again once I had presented them. Briefly, an argument that appears in a lot of textbooks uses a result called the Cauchy mean value theorem, and applies it to a cleverly chosen function. Whereas I…
View original post 2,847 more words