Source: http://terrytao.wordpress.com/career-advice/there%E2%80%99s-more-to-mathematics-than-grades-and-exams-and-methods/

*When you have mastered numbers, you will in fact no longer be reading numbers, any more than you read words when reading books. You will be reading meanings.* (W. E. B. Du Bois)

When learning mathematics as an undergraduate student, there is often a heavy emphasis on grade averages, and on exams which often emphasize memorisation of techniques and theory than on actual conceptual understanding, or on either intellectual or intuitive thought. There are good reasons for this; there is a certain amount of theory and technique that must be practiced before one can really get anywhere in mathematics (much as there is a certain amount of drill required before one can play a musical instrument well). It doesn’t matter how much innate mathematical talent and intuition you have; if you are unable to, say, compute a multidimensional integral, manipulate matrix equations, understand abstract definitions, or correctly set up a proof by induction, then it is unlikely that you will be able to work effectively with higher mathematics.

However, as you transition to graduate school you will see that there is a higher level of learning (and more importantly, *doing*) mathematics, which requires more of your intellectual faculties than merely the ability to memorise and study, or to copy an existing argument or worked example. This often necessitates that one discards (or at least revises) many undergraduate study habits; there is a much greater need for self-motivated study and experimentation to advance your own understanding, than to simply focus on artificial benchmarks such as examinations.

Continue reading at http://terrytao.wordpress.com/career-advice/there%E2%80%99s-more-to-mathematics-than-grades-and-exams-and-methods/

### Like this:

Like Loading...

*Related*