Representable Functor F of C ( a, -):
$latex boxed {(-)^{a} = text {F} iff a = text {log F}}&fg=aa0000&s=3$
4.2Yoneda Lemma
Prove :
Yoneda Lemma:
$latex text {F :: C} to text {Set}$
$latex boxed {alpha text { :: [C, Set] (C (a, -),F) } simeq text {F a}}&fg=0000aa&s=3$
$latex alpha : text {Natural Transformation}$
$latex simeq : text {(Natural) Isomorphism}$
Proof: By “Diagram chasing” below, shows that
Left-side: $latex alpha text { :: [C, Set] (C (a, -),F) } $ is indeed a (co-variant) Functor.
Right-side: Functor “F a“.
Note: When talking about the natural transformations, always mention their component “x”: $latex alpha_{x}, beta_{x}$
Yoneda Embedding (Lagatta)



