Young’s Convolution Theorem

Let 1\leq p,q\leq \infty and 1/p+1/q\geq 1, and let 1/r=1/p+1/q-1. If f\in L^p(\mathbb{R}^n) and g\in L^q(\mathbb{R}^n), then f*g\in L^r(\mathbb{R}^n) and \displaystyle \|f*g\|_r\leq\|f\|_p\|g\|_q.

Amazing Theorem! If q=1, then \|f*g\|_p\leq\|f\|_p\|g\|_1.

Unknown's avatar

Author: mathtuition88

Math and Education Blog

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.