Relationship between L^p convergence and a.e. convergence

It turns out that convergence in Lp implies that the norms converge. Conversely, a.e. convergence and the fact that norms converge implies Lp convergence. Amazing!

Relationship between L^p convergence and a.e. convergence:
Let f, \{f_k\}\in L^p, 0<p\leq\infty. If \|f-f_k\|_p\to 0, then \|f_k\|_p\to\|f\|_p. Conversely, if f_k\to f a.e.\ and \|f_k\|_p\to\|f\|_p, 0<p<\infty, then \|f-f_k\|_p\to 0. Note that the converse may fail for p=\infty.

Proof:
Assume \|f-f_k\|_p\to 0.

(Case: 0<p<1).
Lemma 1:
If 0<p<1, |a+b|^p\leq|a|^p+|b|^p for all a,b\in\mathbb{R}.
Proof of Lemma 1:
\displaystyle 1=\frac{|a|}{|a|+|b|}+\frac{|b|}{|a|+|b|}\leq\left(\frac{|a|}{|a|+|b|}\right)^p+\left(\frac{|b|}{|a|+|b|}\right)^p=\frac{|a|^p+|b|^p}{(|a|+|b|)^p}.
Hence |a+b|^p\leq(|a|+|b|)^p\leq|a|^p+|b|^p.
End Proof of Lemma 1.
Hence, using |a|^p\leq|a-b|^p+|b|^p and |b|^p\leq|a-b|^p+|a|^p we see that \displaystyle ||a|^p-|b|^p|\leq|a-b|^p.

Thus
\begin{aligned}  \left|\|f_k\|_p^p-\|f\|_p^p\right|&=\left|\int(|f_k|^p-|f|^p)\right|\\  &\leq\int\left||f_k|^p-|f|^p\right|\\  &\leq\int|f_k-f|^p\\  &=\|f-f_k\|_p^p\to 0\ \ \ \text{as}\ k\to\infty.  \end{aligned}

Hence \|f_k\|_p\to\|f\|_p.

(Case: 1\leq p\leq\infty.)

By Minkowski’s inequality, \|f\|_p\leq\|f-f_k\|_p+\|f_k\|_p and \|f_k\|_p\leq\|f-f_k\|_p+\|f\|_p so that \displaystyle \left|\|f_k\|_p-\|f\|_p\right|\leq\|f-f_k\|_p\to 0 as k\to\infty. Done.

Converse:

Assume f_k\to f a.e.\ and \|f_k\|_p\to\|f\|_p, 0<p<\infty.
Lemma 2:
For a,b\in\mathbb{R}, |a+b|^p\leq 2^{p-1}(|a|^p+|b|^p) for 1\leq p<\infty.
Proof of Lemma 2:
By convexity of |x|^p for 1\leq p<\infty, \displaystyle \left|\frac 12 a+\frac 12 b\right|^p\leq\frac 12 |a|^p+\frac 12 |b|^p.
Multiplying throughout by 2^p gives \displaystyle |a+b|^p\leq 2^{p-1}(|a|^p+|b|^p).

Thus together with Lemma 1, for 0<p<\infty we have |f-f_k|^p\leq c(|f|^p+|f_k|^p) with c=\max\{2^{p-1}, 1\}.

Note that |f-f_k|^p\to 0 a.e.\ and \phi_k:=c(|f|^p+|f_k|^p)\to\phi:=2c|f|^p a.e.\ which is integrable. Also, \int\phi_k\to\int\phi since \|f_k\|_p^p\to\|f\|_p^p. By Generalized Lebesgue’s DCT, we have \int |f-f_k|^p\to 0 thus \displaystyle \|f-f_k\|_p\to 0.

(Show that the converse may fail for p=\infty):

Consider f_k=\chi_{[-k,k]}\in L^\infty(\mathbb{R}). Then f_k\to f a.e.\ where f(x)\equiv 1, and \|f_k\|_\infty\to\|f\|_\infty=1. However \|f-f_k\|_\infty=1\not\to 0.

Unknown's avatar

Author: mathtuition88

Math and Education Blog

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.