Rouche’s Theorem

Rouche’s Theorem

If the complex-valued functions f and g are holomorphic inside and on some closed contour K, with |g(z)|<|f(z)| on K, then f and f+g have the same number of zeroes inside K, where each zero is counted as many times as its multiplicity.

Example

Consider the polynomial z^5+3z^3+7 in the disk |z|<2. Let g(z)=3z^3+7, f(z)=z^5, then

\begin{aligned}  |3z^3+7|&<3(8)+7\\  &=31\\  &<32\\  &=|z^5|  \end{aligned}
for every |z|=2.
Then f+g has the same number of zeroes as f(z)=z^5 in the disk |z|<2, which is exactly 5 zeroes.

Unknown's avatar

Author: mathtuition88

Math and Education Blog

One thought on “Rouche’s Theorem”

Leave a comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.