Analysis Part 7

www.mathtuition88.com

November 5, 2016

Book: Measure and Integral by Wheeden and Zygmund

9 Chapter 9

9.1 Q4

(a)

We will prove by induction that

$$h^{(n)}(x) = \begin{cases} p_n(x^{-1})e^{-x^{-2}} & \text{if } x > 0, \\ 0 & \text{if } x \le 0. \end{cases}$$

where $p_n(x^{-1})$ is a polynomial in x^{-1} .

(Base case: n = 1.)

If x < 0, it is clear that h'(x) = 0.

If
$$x > 0$$
, $h'(x) = \frac{d}{dx}(e^{-x^{-2}}) = 2x^{-3}e^{-x^{-2}}$, where $p_1(x^{-1}) = 2x^{-3}$.

If x = 0, the left derivative $h'_{-}(0) = 0$ and the right derivative

$$h'_{+}(0) = \lim_{x \to 0^{+}} \frac{h(x) - h(0)}{x - 0}$$

$$= \lim_{x \to 0^{+}} \frac{e^{-x^{-2}}}{x}$$

$$= \lim_{x \to 0^{+}} \frac{x^{-1}}{e^{x^{-2}}}$$

$$= \lim_{x \to 0^{+}} \frac{-x^{-2}}{-2x^{-3}e^{x^{-2}}}$$

$$= \lim_{x \to 0^{+}} \frac{x}{2e^{x^{-2}}}$$

$$= 0.$$
(L'Hopital's Rule)

(Inductive Step) Assume that for some $k \ge 1$, $h^{(k)}(x) = p_k(x^{-1})e^{-x^{-2}}$ if x > 0, 0 otherwise.

If x > 0, using Product Rule, we can see that $h^{(k+1)}(x) = p_{k+1}(x^{-1})e^{-x^{-2}}$ for some polynomial p_{k+1} .

If x < 0, again clearly $h^{(k+1)}(x) = 0$.

If x = 0, $h_{-}^{(k+1)}(x) = 0$ while the right derivative

$$h_{+}^{(k+1)}(x) = \lim_{x \to 0^{+}} \frac{p_{k}(x^{-1})e^{-x^{-2}}}{x}.$$

Note that $p_k(x^{-1}) = \frac{g(x)}{x^m}$ for some polynomial g(x) and some $m \in \mathbb{N}$.

So

$$h_{+}^{(k+1)}(x) = \left(\lim_{x \to 0^{+}} g(x)\right) \left(\lim_{x \to 0^{+}} \frac{e^{-x^{-2}}}{x^{m+1}}\right) = 0$$

since

$$\lim_{x \to 0^+} \frac{e^{-x^{-2}}}{x^{m+1}} = \lim_{x \to 0^+} \frac{x^{-m-1}}{e^{x^{-2}}} = 0$$

by repeated application of L'Hopital's Rule.

Thus, by Mathematical Induction, h is in C^{∞} .

(b)

Let $\phi(x) = x - a$. Clearly ϕ is C^{∞} . Then $h(x - a) = h(\phi(x))$ is C^{∞} since it is the composition of h and ϕ . Similarly, h(b - x) is C^{∞} . Then g(x) = h(x - a)h(b - x) is C^{∞} (we can see this by repeated usage of product rule, or the general Leibniz rule).

If $x \le a$, then $x - a \le 0$ so that h(x - a) = 0. If $x \ge b$, then $b - x \le 0$ so that h(b - x) = 0. If a < x < b, then x - a > 0 and b - x > 0 so that g(x) > 0.

So supp
$$(g) = \overline{(a,b)} = [a,b].$$

(c)

Support is a ball:

Define
$$g(x_1, ..., x_n) = h(r^2 - (\sum_{i=1}^n x_i^2))$$
, where $r > 0$.

Then $g \in C_0^{\infty}(\mathbb{R}^n)$ and $\operatorname{supp}(g) = \overline{B_r(0)}$, the (closed) ball with radius r centered at the origin.

Support is an interval:

Define
$$g(x_1, \ldots, x_n) = \prod_{i=1}^n [h(x_i - a_i)h(b_i - x_i)]$$
 for $a_i < b_i$.
Then $g \in C_0^{\infty}(\mathbb{R}^n)$ and $\operatorname{supp}(g) = \prod_{i=1}^n [a_i, b_i]$.

9.2 Q5

Lemma 9.2.1. We can choose an open G_2 such that $\overline{G_1} \subset G_2$, and $\overline{G_2} \subset G$.

Proof. We use the fact that \mathbb{R}^n is a normal space: every two disjoint closed sets of \mathbb{R}^n have disjoint open neighborhoods.

Note that $\overline{G_1}$ and G^c (complement of G) are disjoint closed sets. Thus there are disjoint open sets G_2 , G_3 such that $\overline{G_1} \subset G_2$ and $G^c \subset G_3$. Note that $G_2 \cap G_3 = \emptyset$ implies $G_2 \subset G_3^c$ and $G^c \subset G_3$ implies $G_3^c \subset G$. Further-

more G_3^c is closed. Then

$$\overline{G_1} \subset G_2 \subset \overline{G_2} \subset G_3^c \subset G$$
.

Define

$$\epsilon_1 = \inf\{|x - y| : x \in G_1, y \in G_2^c\} = \operatorname{dist}(G_1, \partial G_2)$$

$$\epsilon_2 = \inf\{|x - y| : x \in G_2, y \in G^c\} = \operatorname{dist}(G_2, \partial G)$$

and let $\epsilon = \min\{\epsilon_1, \epsilon_2\}$.

By Question 4(c), we can choose $K \in C_0^{\infty}$ with supp $(K) = \overline{B_{\epsilon}(0)}$. Since K is continuous with compact support, K is integrable. By multiplying with a suitable constant, we can further assume that $\int K = 1$.

Let $h(x) = (\chi_{G_2} * K)(x)$. Theorem 9.3 tells us that $h \in C^{\infty}$, since $\chi_{G_2} \in L^1$ as G_2 is a bounded set.

Let $x \in G_1$. Then

$$h(x) = \int_{\mathbb{R}^n} \chi_{G_2}(x - t)K(t) dt$$

$$= \int_{B_{\epsilon}(0)} \chi_{G_2}(x - t)K(t) dt \qquad \text{(since supp}(K) = \overline{B_{\epsilon}(0)})$$

$$= \int_{B_{\epsilon}(0)} K(t) dt \qquad \text{(since } x - t \in G_2 \text{ for } |t| < \epsilon)$$

$$= 1.$$

Finally, if $x \in G^c$, then

$$h(x) = \int_{\mathbb{R}^n} \chi_{G_2}(x - t) K(t) dt$$
$$= \int_{B_{\epsilon}(0)} \chi_{G_2}(x - t) K(t) dt$$
$$= 0$$

since $x - t \notin G_2$ for $|t| < \epsilon$.

9.3 Q6

Let $K(x) \leq M$ for all $x \in \mathbb{R}^n$.

Then

$$|(f * K)(x)| = \left| \int_{\mathbb{R}^n} f(x - t) K(t) dt \right|$$

$$\leq \left| \int_{\mathbb{R}^n} f(x - t) dt \right| M$$

$$\leq ||f||_1 M$$

$$< \infty.$$

So f * K is bounded.

Let $\epsilon > 0$. Since K is uniformly continuous on \mathbb{R}^n , there exists $\delta(\epsilon) > 0$ such that for any $x, y \in \mathbb{R}^n$, if $|x - y| < \delta$, then $|K(x) - K(y)| < \frac{\epsilon}{\|f\|_1 + 1}$.

Then for all $|x - y| < \delta$,

$$|(f*K)(x) - (f*K)(y)| = \left| \int_{\mathbb{R}^n} f(t)K(x-t) dt - \int_{\mathbb{R}^n} f(t)K(y-t) dt \right|$$

$$= \left| \int_{\mathbb{R}^n} f(t)[K(x-t) - K(y-t)] dt \right|$$

$$\leq \frac{\epsilon}{\|f\|_1 + 1} \int_{\mathbb{R}^n} |f(t)| dt$$

$$= \frac{\epsilon}{\|f\|_1 + 1} \|f\|_1$$

$$< \epsilon.$$

Hence f * K is uniformly continuous.

9.4 Q7

It is shown in the textbook that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) P_y(x) = 0$$
 for $y > 0$.

Thus it suffices to show that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(x,y) = \int_{-\infty}^{\infty} f(t) \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) P_y(x-t) dt = 0.$$

Lemma 9.4.1. $\frac{\partial}{\partial x} f(x,y) = \int_{-\infty}^{\infty} f(t) \frac{\partial}{\partial x} P_y(x-t) dt$.

Proof. Let y > 0. By definition,

$$\frac{\partial}{\partial x} P_y(x-t) = \lim_{h \to 0} \frac{P_y(x+h-t) - P_y(x-t)}{h}.$$

Let (h_n) be a sequence tending to 0, $h_n \neq 0$, and define

$$\phi_n(x,t) = \frac{P_y(x+h_n-t) - P_y(x-t)}{h_n}.$$

It follows that $\frac{\partial}{\partial x}P_y(x-t) = \lim_{n\to\infty} \phi_n(x,t)$.

Using Mean Value Theorem, we have

$$|\phi_n(x,t)| = \left| \frac{\partial}{\partial x} P_y(c-t) \right| \quad \text{for some } c \in (x, x+h_n)$$

$$\leq \sup_{x \in \mathbb{R}} \left| \frac{\partial}{\partial x} P_y(x-t) \right|.$$

Let R > 0 be arbitrary. For $|x| \leq R$, note that

$$\left| \frac{\partial}{\partial x} P_y(x - t) \right| = \frac{1}{\pi} \left| \frac{\partial}{\partial x} \frac{y}{y^2 + (x - t)^2} \right|$$

$$= \frac{1}{\pi} \left| \frac{1}{y^2 + (x - t)^2} \cdot \frac{-2y(x - t)}{y^2 + (x - t)^2} \right| \qquad \text{(Quotient Rule)}$$

$$\leq \frac{1}{\pi} \left(\frac{1}{y^2 + (x - t)^2} \right)$$

$$\text{(since } \left| \frac{2y(x - t)}{y^2 + (x - t)^2} \right| \leq 1 \text{ by the inequality } 2|ab| \leq a^2 + b^2\text{)}$$

$$\leq \frac{1}{\pi} \frac{1}{y^2 + (\max\{|t| - R, 0\})^2} := g(t).$$

Note that if R is sufficiently large, for |x| > R, $\left| \frac{\partial}{\partial x} P_y(x-t) \right|$ is arbitrarily small since $\frac{1}{\pi} \left(\frac{1}{y^2 + (x-t)^2} \right)$ decays to 0 as $|x| \to \infty$.

Note that $g \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$. Next, note that $g \in L^1(\mathbb{R}) \cap L^\infty(\mathbb{R})$ implies $g \in L^q(\mathbb{R})$, where q is the Hölder conjugate of p. Explanation: $\int |g|^q \le |g|_{\infty}^{q-1} \int |g| < \infty$.

Hence $||fg||_1 \le ||f||_p ||g||_q < \infty$ by Hölder's inequality. Hence $|f(t)\phi_n(x,t)| \le |f(t)g(t)|$ where fg is integrable. Thus, by Lebesgue's DCT,

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(t)\phi_n(x,t) dt = \int_{-\infty}^{\infty} f(t) \lim_{n \to \infty} \phi_n(x,t) dt.$$

Since y > 0 and R > 0 are arbitrary,

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x} \int_{-\infty}^{\infty} f(y)P_y(x-t) dt = \int_{-\infty}^{\infty} f(t) \frac{\partial}{\partial x} P_y(x-t) dt$$

holds for the upper half-plane.

Note that the main argument above is to find an integrable function that dominates $|f(t)\frac{\partial}{\partial x}P_y(x-t)|$.

Similarly, we can prove $\frac{\partial^2}{\partial x^2} f(x,y) = \int_{-\infty}^{\infty} f(t) \frac{\partial^2}{\partial x^2} P_y(x-t) dt$ and the analogous statements for $\frac{\partial}{\partial y} f(x,y)$ and $\frac{\partial^2}{\partial y^2} f(x,y)$.

Briefly, since the Poisson kernel is smooth, all derivatives of it are bounded on all compact subsets of the upper half-plane. Furthermore, it decays to zero as $|x| \to \infty$, with faster decay for higher-order derivatives. Thus our dominating function g(t) (multiplied by a constant) works for all derivatives.

9.5 Q8

We note that for s > 0,

$$K(s,t) = K(s \cdot 1, s \cdot t/s) = s^{-1}K(1, t/s).$$

Therefore

$$(Tf)(s) = \int_0^\infty f(t)s^{-1}K(1, t/s) dt$$

= $\int_0^\infty f(ts)s^{-1}K(1, t)s dt$
= $\int_0^\infty f(ts)K(1, t) dt$.

(Case: $1 \le p < \infty$.) Then,

$$||Tf||_{p} = \left(\int \left|\int_{0}^{\infty} f(ts)K(1,t) dt\right|^{p} ds\right)^{1/p}$$

$$\leq \left(\int \left(\int_{0}^{\infty} |f(ts)K(1,t)| dt\right)^{p} ds\right)^{1/p}$$

$$\leq \int_{0}^{\infty} \left(\int |f(ts)K(1,t)|^{p} ds\right)^{1/p} dt$$

(by Minkowski's integral inequality)

$$= \int_0^\infty \left(\int |f(ts)|^p \, ds \right)^{1/p} K(1,t) \, dt$$

$$= \int_0^\infty \left(\int t^{-1} |f(s)|^p \, ds \right)^{1/p} K(1,t) \, dt$$

$$= \|f\|_p \int_0^\infty t^{-1/p} K(1,t) \, dt$$

$$= \gamma \|f\|_p.$$

(Case: $p = \infty$.)

$$||Tf||_{\infty} = \operatorname{ess\,sup} \left| \int_{0}^{\infty} f(ts)K(1,t) \, dt \right|$$

$$\leq ||f||_{\infty} \left| \int_{0}^{\infty} K(1,t) \, dt \right|$$

$$= \gamma ||f||_{\infty}. \qquad (\text{since } \int_{0}^{\infty} K(1,t) \, dt = \gamma \text{ for } p = \infty)$$

9.6 Q11

(Case: $\gamma \neq 0$).

Consider $g(x) = K(x)/\gamma$. Then $g \in L^1(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} g = 1$. Let $g_{\epsilon}(x) = \epsilon^{-n} g(\frac{x}{\epsilon})$.

Then

$$||f_{\epsilon} - \gamma f||_{p} = ||f * K_{\epsilon} - \gamma f||_{p}$$

$$= |\gamma| ||f * g_{\epsilon} - f||_{p}$$

$$\to 0 \quad \text{as } \epsilon \to 0.$$
 (By Theorem 9.6)

(Case: $\gamma = 0$).

Let $h \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} h = 1$. Then $K + h \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} (K + h) = 1$. Let $h_{\epsilon}(x) = \epsilon^{-n} h(\frac{x}{\epsilon})$.

$$||f_{\epsilon} - \gamma f||_{p} = ||f * K_{\epsilon}||_{p}$$

$$= ||f * (K_{\epsilon} + h_{\epsilon}) - f + f - f * h_{\epsilon}||_{p}$$

$$\leq ||f * (K + h)_{\epsilon} - f||_{p} + ||f * h_{\epsilon} - f||_{p}$$

$$\to 0 \quad \text{as } \epsilon \to 0. \quad \text{(By Theorem 9.6)}$$

Analogous results for Theorems 9.8, 9.9 and 9.13 can be obtained by replacing $f_{\epsilon} \to f$ by $f_{\epsilon} \to \gamma f$ as $\epsilon \to 0$. The proof is similar to that of the generalized Theorem 9.6.

9.7 Q13

Note that $|I_{k,j}|^{-1} = 2^k$, and

$$f_k(x) = \sum_{j=1}^{2^k} 2^k \int_{I_{k,j}} f(t) dt \chi_{I_{k,j}}(x).$$

Lemma 9.7.1. $f_k \in L^p(0,1)$ for all $k \in \mathbb{N}$.

Proof.

$$\begin{split} \int_{0}^{1} |f_{k}(x)|^{p} \, dx &= \int_{0}^{1} \left| \sum_{j=1}^{2^{k}} 2^{k} \int_{I_{k,j}} f(t) \, dt \chi_{I_{k,j}}(x) \right|^{p} \, dx \\ &= 2^{kp} \sum_{j=1}^{2^{k}} \int_{I_{k,j}} \left| \int_{I_{k,j}} f(t) \, dt \right|^{p} \, dx \\ &\leq 2^{kp} \sum_{j=1}^{2^{k}} \int_{I_{k,j}} \left[\int_{I_{k,j}} |f(t)| \, dt \right]^{p} \, dx \\ &\leq 2^{kp} \sum_{j=1}^{2^{k}} \int_{I_{k,j}} \left[\left(\int_{I_{k,j}} |f(t)|^{p} \, dt \right)^{1/p} \left(\int_{I_{k,j}} |1|^{p'} \, dt \right)^{1/p'} \right]^{p} \, dx \\ &= 2^{kp} \sum_{j=1}^{2^{k}} \int_{I_{k,j}} \left[\left(\int_{I_{k,j}} |f(t)|^{p} \, dt \right) 2^{-kp/p'} \right] \, dx \\ &= 2^{kp-k-kp/p'} \sum_{j=1}^{2^{k}} \int_{I_{k,j}} |f(t)|^{p} \, dt \\ &= \int_{0}^{1} |f(t)|^{p} \, dt \\ &= \|f\|_{p}^{p} < \infty. \end{split}$$

By Lebesgue's Differentiation Theorem, $f_k \to f$ a.e. By Fatou's Lemma, we have

$$\int_0^1 |f|^p \le \liminf \int_0^1 |f_k|^p$$

$$\le \lim \sup \int_0^1 |f_k|^p$$

$$\le \int_0^1 |f|^p. \qquad (\text{since } \int_0^1 |f_k|^p \le \int_0^1 |f|^p \text{ for all } k)$$

Hence $||f_k||_p \to ||f||_p$.

Using Chapter 8 Exercise 12 (If $f_k \to f$ a.e. and $||f_k||_p \to ||f||_p$, $0 , then <math>||f - f_k||_p \to 0$), we can conclude that $f_k \to f$ in $L^p(0,1)$ norm.