Analysis Part 4

www.mathtuition88.com

Book: Measure and Integral by Wheeden and Zygmund

5 Chapter 5

5.1 Q10

Assume p > 0, $\int_E |f - f_k|^p \to 0$, and $\int_E |f_k|^p \le M$ for all k.

By Q9, there is a subsequence $f_{k_j} \to f$ a.e. in E. Since $t \mapsto |t|^p$ is continuous, $|f_{k_j}|^p \to |f|^p$ a.e. in E.

By Fatou's Lemma,

$$\int_{E} |f|^{p} \le \liminf_{j \to \infty} \int_{E} |f_{k_{j}}|^{p} \le M.$$

5.2 Q14

Let $f \in L^p(E)$. WLOG we may assume $f \ge 0$ since for a > 0,

$$0 \le a^p \omega(a) = a^p |\{f > a\}| \le a^p |\{|f| > a\}|.$$

Thus if $\lim_{a\to 0+} a^p |\{|f| > a\}| = 0$, that would imply $\lim_{a\to 0+} a^p \omega(a) = 0$. Let $\epsilon > 0$.

Lemma 5.1. We may choose $\delta > 0$ such that $\int_{\{f \leq \delta\}} f^p < \epsilon$.

Proof. Define

$$f_k(x) = \begin{cases} 0 & \text{if } 0 \le f(x) \le \frac{1}{k} \\ f(x) & \text{otherwise.} \end{cases}$$

Then $f_k^p \to f^p$ and $|f_k^p| \le f^p$. Since $f^p \in L(E)$, by Lebesgue's DCT, $\int_E f_k^p \to \int_E f^p$. There exists K such that for $k \ge K$, $|\int_E f^p - \int_E f_k^p| = |\int_{\{f \le \frac{1}{k}\}} f^p| < \epsilon$. Take $\delta = \frac{1}{K}$, then $\int_{\{f \le \delta\}} f^p < \epsilon$.

Note that $\omega(a), \omega(\delta) < \infty$ since $f \in L^p(E)$. Thus

$$a^{p}[\omega(a) - \omega(\delta)] = a^{p}[|\{f > a\}| - |\{f > \delta\}|]$$

$$= a^{p}|\{a < f \le \delta\}|$$

$$= \int_{\{a < f \le \delta\}} a^{p}$$

$$\le \int_{\{a < f \le \delta\}} f^{p}$$

$$< \epsilon$$

for $0 < a < \delta$.

Rearranging, we get $a^p\omega(a) < \epsilon + a^p\omega(\delta)$. Letting $a \to 0+$ gives

$$\lim_{a \to 0+} a^p \omega(a) = 0$$

since $\epsilon > 0$ is arbitrary.

5.3 Q15

Since $\omega(\alpha)$ is a decreasing function, for a > 0 we have

$$\int_{a/2}^{a} \alpha^{p-1} \omega(\alpha) d\alpha \ge \omega(a) \int_{a/2}^{a} \alpha^{p-1} d\alpha$$
$$= \omega(a) \left[\frac{\alpha^{p}}{p} \right]_{a/2}^{a}$$
$$= \omega(a) a^{p} \left(\frac{2^{p} - 1}{2^{p} p} \right).$$

Thus,

$$a^p \omega(a) \le \frac{2^p p}{2^p - 1} \int_{a/2}^a \alpha^{p-1} \omega(\alpha) \, d\alpha \le \frac{2^p p}{2^p - 1} \int_0^a \alpha^{p-1} \omega(\alpha) \, d\alpha.$$

Lemma 5.2. $\lim_{a\to 0+} \int_0^a \alpha^{p-1} \omega(\alpha) d\alpha = 0$.

Proof. For 0 < a < 1, we have

$$\int_0^a \alpha^{p-1} \omega(\alpha) \, d\alpha = \int_0^1 \alpha^{p-1} \omega(\alpha) \, d\alpha - \int_a^1 \alpha^{p-1} \omega(\alpha) \, d\alpha.$$

Note that $\int_a^1 \alpha^{p-1} \omega(\alpha) d\alpha = \int_0^1 \alpha^{p-1} \omega(\alpha) \cdot \chi_{[a,1]} d\alpha$. Let $a_k \to 0+$, then note that

$$0 \le \alpha^{p-1}\omega(\alpha)\chi_{[a_k,1]} \nearrow \alpha^{p-1}\omega(\alpha)$$

on (0,1) thus by Monotone Convergence Theorem,

$$\int_{a}^{1} \alpha^{p-1} \omega(\alpha) \, d\alpha \to \int_{0}^{1} \alpha^{p-1} \omega(\alpha) \, d\alpha$$

as $a \to 0+$. This proves $\lim_{a\to 0+} \int_0^a \alpha^{p-1} \omega(\alpha) d\alpha = 0$.

Hence $\lim_{a\to 0+} a^p \omega(a) = 0$ as a direct consequence of the lemma.

Similarly for b > 0 we have

$$b^{p}\omega(b) \le \frac{2^{p}p}{2^{p}-1} \int_{b/2}^{b} \alpha^{p-1}\omega(\alpha) d\alpha.$$

Lemma 5.3. $\lim_{b\to\infty} \int_{b/2}^b \alpha^{p-1} \omega(\alpha) d\alpha = 0.$

Proof. Write

$$\int_{b/2}^{b} \alpha^{p-1} \omega(\alpha) \, d\alpha = \int_{0}^{b} \alpha^{p-1} \omega(\alpha) \, d\alpha - \int_{0}^{b/2} \alpha^{p-1} \omega(\alpha) \, d\alpha.$$

By similar argument using Monotone Convergence Theorem, we have

$$\lim_{b \to \infty} \int_0^b \alpha^{p-1} \omega(\alpha) \, d\alpha = \lim_{b \to \infty} \int_0^{b/2} \alpha^{p-1} \omega(\alpha) \, d\alpha = \int_0^\infty \alpha^{p-1} \omega(\alpha) \, d\alpha < \infty.$$

Thus
$$\lim_{b\to\infty} \int_{b/2}^b \alpha^{p-1} \omega(\alpha) d\alpha = 0.$$

This proves $\lim_{b\to\infty} b^p \omega(b) = 0$.

5.4 Q16

Let $E_{ab} = \{x \in E : a < f(x) \le b\}$ for $0 < a < b < \infty$. We quote a theorem from the textbook:

Theorem (Theorem 5.46). If $a < f \le b$ (a and b finite) in $E(|E| < \infty)$ and ϕ is continuous on [a, b], then $\int_E \phi(f) = -\int_a^b \phi(\alpha) d\omega(\alpha)$.

Note that $|E_{ab}| \leq \omega(a) < \infty$ and $\phi(\alpha) = \alpha^p$ is continuous. Applying Theorem 5.46, we have

$$\int_{E_{ab}} f^p = -\int_a^b \alpha^p \, d\omega(\alpha).$$

Taking limits as $a \to 0+$ and $b \to \infty$, we get

$$\int_{E} f^{p} = -\int_{0}^{\infty} \alpha^{p} d\omega(\alpha)$$

by Monotone Convergence Theorem, since $f^p \chi_{E_{ab}} \nearrow f^p$ on E.

If $\int_0^\infty \alpha^p d\omega(\alpha) = -\infty$ and $\int_0^\infty \alpha^{p-1}\omega(\alpha) d\alpha = \infty$, then Theorem 5.51 holds since

$$\infty = \int_{E} f^{p} = -\int_{0}^{\infty} \alpha^{p} d\omega(\alpha) = p \int_{0}^{\infty} \alpha^{p-1} \omega(\alpha) d\alpha.$$

Next, assume either $\int_0^\infty \alpha^p d\omega(\alpha)$ or $\int_0^\infty \alpha^{p-1}\omega(\alpha)$ is finite.

By Theorem 2.21 (integration by parts), if $0 < a < b < \infty$, we have

$$-\int_{a}^{b} \alpha^{p} d\omega(\alpha) = -b^{p} \omega(b) + a^{p} \omega(a) + p \int_{a}^{b} \alpha^{p-1} \omega(\alpha) d\alpha \qquad (5.1)$$

using the fact that α^p is continuously differentiable on [a, b].

Case 1) If $\int_0^\infty \alpha^{p-1} \omega(\alpha) d\alpha < \infty$, using Q15 and taking limits as $a \to 0+$, $b \to \infty$ in (5.1), we get

$$-\int_0^\infty \alpha^p \, d\omega(\alpha) = 0 + 0 + p \int_0^\infty \alpha^{p-1} \omega(\alpha) \, d\alpha.$$

Case 2) If $|\int_0^\infty \alpha^p d\omega(\alpha)| < \infty$, then $\int_E f^p = -\int_0^\infty \alpha^p d\omega(\alpha) < \infty$, i.e. $f \in L^p(E)$. Thus Lemma 5.50 and Q14 holds so that $\lim_{b\to\infty} b^p \omega(b) = \lim_{a\to 0+} a^p \omega(a) = 0$. Hence taking limits as $a\to 0+$, $b\to \infty$ in (5.1), we get

$$-\int_0^\infty \alpha^p \, d\omega(\alpha) = p \int_0^\infty \alpha^{p-1} \omega(\alpha) \, d\alpha.$$

5.5 Q18

Let $f \geq 0$. By Question 16,

$$\int_{E} f^{p} = p \int_{0}^{\infty} \alpha^{p-1} \omega(\alpha) \, d\alpha,$$

thus $f \in L^p$ iff $\int_0^\infty \alpha^{p-1} \omega(\alpha) d\alpha < \infty$.

The key observation is

$$\int_0^\infty \alpha^{p-1}\omega(\alpha) d\alpha = \sum_{k=-\infty}^\infty \int_{2^k}^{2^{k+1}} \alpha^{p-1}\omega(\alpha) d\alpha.$$
 (5.2)

Since α^{p-1} is increasing and $\omega(\alpha)$ is decreasing, we have

$$\int_{2^k}^{2^{k+1}} (2^k)^{p-1} \omega(2^{k+1}) \le \int_{2^k}^{2^{k+1}} \alpha^{p-1} \omega(\alpha) \le \int_{2^k}^{2^{k+1}} (2^{k+1})^{p-1} \omega(2^k).$$

Simplifying, we get

$$2^{-p}[2^{(k+1)p}\omega(2^{k+1})] \le \int_{2^k}^{2^{k+1}} \alpha^{p-1}\omega(\alpha) \le 2^{p-1}[2^{kp}\omega(2^k)].$$

Summing from $k = -\infty$ to $k = \infty$, we get

$$2^{-p} \sum_{k=-\infty}^{\infty} 2^{(k+1)p} \omega(2^{k+1}) \le \int_0^{\infty} \alpha^{p-1} \omega(\alpha) \, d\alpha \le 2^{p-1} \sum_{k=-\infty}^{\infty} 2^{kp} \omega(2^k).$$

Note that the left most term

$$2^{-p} \sum_{k=-\infty}^{\infty} 2^{(k+1)p} \omega(2^{k+1}) = 2^{-p} \sum_{k=-\infty}^{\infty} 2^{kp} \omega(2^k)$$

by change of index in summation.

Therefore $\sum_{k=-\infty}^{\infty} 2^{kp} \omega(2^k) < \infty$ iff $\int_0^{\infty} \alpha^{p-1} \omega(\alpha) d\alpha < \infty$ iff $f \in L^p$.

$5.6 \quad Q20$

We first prove the statement for any indicator function χ_{E_1} , where $E_1 \subseteq E$ is measurable. We will use the following theorem.

Theorem (Theorem 3.35). Let T be a linear transformation of \mathbb{R}^n , and let E be measurable. Then $|TE| = |\det T||E|$.

We have

$$|\det T| \int_{T^{-1}E} \chi_{E_1}(Tx) \, dx = |\det T| \int_{T^{-1}E} \chi_{T^{-1}E_1}(x) \, dx$$

$$= |\det T| |T^{-1}E_1|$$

$$= |\det T| |\det T^{-1}| |E_1| \qquad \text{(by Theorem 3.35)}$$

$$= |E_1| \qquad \text{(since } |\det T| |\det T^{-1}| = 1)$$

$$= \int_E \chi_{E_1}(y) \, dy.$$

By linearity of the integral, the statement is also true for any simple function $f(x) = \sum_{k=1}^{N} a_k \chi_{E_k}(x)$, where E_1, \dots, E_N are measurable.

Write $f = f^+ - f^-$. Since $f^+ \ge 0$, there is an increasing sequence of measurable simple functions $f_k \nearrow f^+$. Then by Monotone Convergence Theorem,

$$\int_{E} f^{+}(y) \, dy = |\det T| \int_{T^{-1}E} f^{+}(Tx) \, dx.$$

Since $f^- \geq 0$, similarly the statement is also true for f^- .

Since $\int_E f(y) dy$ exists, at least one of the integrals $\int_E f^+(y) dy$, $\int_E f^-(y) dy$ is finite (so the case $\infty - \infty$ will not occur), thus we may conclude that

$$\int_{E} f(y) \, dy = \int_{E} f^{+}(y) \, dy - \int_{E} f^{-}(y) \, dy$$

$$= |\det T| \int_{T^{-1}E} f^{+}(Tx) \, dx - |\det T| \int_{T^{-1}E} f^{-}(Tx) \, dx$$

$$= |\det T| \int_{T^{-1}E} f(Tx) \, dx.$$

5.7 Q21

We will use the following theorem:

Theorem (Theorem 5.11). Let f be nonnegative and measurable on E. Then $\int_E f = 0$ if and only if f = 0 a.e. in E.

We have $\int_{\{f\geq 0\}} f = 0$ since $\{f\geq 0\}$ is a measurable subset of E. Thus by Theorem 5.11, f=0 a.e. in $\{f\geq 0\}$.

Next we have $\int_{\{f<0\}} f=0$ since $\{f<0\}$ is a measurable set. This implies $\int_{\{f<0\}} (-f)=-0=0$. Since -f is nonnegative and measurable on $\{f<0\}$, this implies -f=0 a.e. in $\{f<0\}$.

Therefore f = 0 a.e. in $E = \{ f \ge 0 \} \cup \{ f < 0 \}$.

6 Chapter 6

6.1 Q2

Let F(x,y) := f(x), G(x,y) := g(y) for all $x,y \in \mathbb{R}^n$. Observe that

$$\{(x,y)\in\mathbb{R}^n\times\mathbb{R}^n|F(x,y)>\alpha\}=\{x\in\mathbb{R}^n|f(x)>\alpha\}\times\mathbb{R}^n$$

which is measurable by repeated application of Lemma 5.2 which states that $E \times \mathbb{R}$ is measurable for measurable $E \subseteq \mathbb{R}^m$. Thus, F(x,y) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$.

Similarly,

$$\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n | G(x,y) > \alpha\} = \mathbb{R}^n \times \{y \in \mathbb{R}^n | g(y) > \alpha\}$$

is a measurable set. Thus, G(x,y) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$.

Hence F(x,y)G(x,y) = f(x)g(y) is measurable in $\mathbb{R}^n \times \mathbb{R}^n$.

Let E_1 and E_2 be measurable subsets of \mathbb{R}^n . Then χ_{E_1} and χ_{E_2} are measurable in \mathbb{R}^n . By the earlier part, $\chi_{E_1}(x)\chi_{E_2}(y)$ is measurable in $\mathbb{R}^n \times \mathbb{R}^n$.

Note that $\chi_{E_1}(x)\chi_{E_2}(y)=\chi_{E_1\times E_2}(x,y)$, so $E_1\times E_2$ is measurable in $\mathbb{R}^n\times\mathbb{R}^n$.

$$|E_1 \times E_2| = \iint_{\mathbb{R}^n \times \mathbb{R}^n} \chi_{E_1 \times E_2}(x, y) \, dx \, dy$$

$$= \iint_{\mathbb{R}^n \times \mathbb{R}^n} \chi_{E_1}(x) \chi_{E_2}(y) \, dx \, dy$$

$$= \int_{\mathbb{R}^n} \chi_{E_1}(x) \left[\int_{\mathbb{R}^n} \chi_{E_2}(y) \, dy \right] \, dx \qquad \text{(by Tonelli's Theorem)}$$

$$= \int_{\mathbb{R}^n} \chi_{E_1}(x) \, dx \cdot |E_2|$$

$$= |E_1||E_2|.$$

6.2 Q4

By Lemma 6.15, f(x+t) and f(-x+t) are both measurable in \mathbb{R}^2 . By Tonelli's Theorem,

$$\iint_{[0,1]^2} |f(x+t) - f(-x+t)| \, dt \, dx = \int_0^1 \left[\int_0^1 |f(x+t) - f(-x+t)| \, dt \right] \, dx$$

$$\leq \int_0^1 c \, dx$$

$$= c.$$

We quote the following result:

Theorem (Chapter 5 Exercise 20). Let y = Tx be a nonsingular linear transformation of \mathbb{R}^n . If $\int_E f(y) dy$ exists, then

$$\int_{E} f(y) \, dy = |\det T| \int_{T^{-1}E} f(Tx) \, dx.$$

Let $T=\begin{pmatrix}1&1\\-1&1\end{pmatrix}$ so that $\begin{pmatrix}\xi\\\eta\end{pmatrix}=T\begin{pmatrix}x\\t\end{pmatrix}$. Let $E=[0,1]^2$. We compute that $T^{-1}E$ is the convex hull of $\{(0,0),(-\frac{1}{2},\frac{1}{2}),(0,1),(\frac{1}{2},\frac{1}{2})\}$.

$$\iint_{[0,1]^2} |f(\xi) - f(n)| \, d\eta \, d\xi$$

$$= |\det T| \iint_{T^{-1}E} |f(x+t) - f(-x+t)| \, dt \, dx$$

$$\leq 2 \iint_{[-1,1]\times[0,1]} |f(x+t) - f(-x+t)| \, dt \, dx \quad \text{(since } T^{-1}E \subseteq [-1,1]\times[0,1])$$

$$= 4 \iint_{[0,1]^2} |f(x+t) - f(-x+t)| \, dt \, dx \quad \text{(by periodicity of } f)$$

$$\leq 4c.$$

Hence $f(\xi) - f(\eta)$ is integrable over the square $[0,1]^2$. By Q3, we conclude that $f \in L[0,1]$.

6.3 Q5

(a)

$$\int_E f = |R(f, E)|$$
 (by definition of the integral)
$$= \iint_{R(f, E)} dx \, dy$$

$$= \int_0^\infty \left[\int_{\{x: (x, y) \in R(f, E)\}} dx \right] \, dy$$
 (by Tonelli's Theorem)
$$= \int_0^\infty |\{x \in E: f(x) \ge y\}| \, dy$$

$$= \int_0^\infty \omega(y) \, dy.$$

The last equality follows from the fact that $\omega(y)$ is decreasing thus has countably many points of discontinuity, and $\omega(y) = |\{x \in E : f(x) \geq y\}|$ unless y is a point of discontinuity of ω .

(b)

Note that $f^p(x) = \int_0^{f(x)} py^{p-1} dy$ for all $x \in E$. Thus

$$\int_{E} f^{p}(x) dx = \int_{E} \int_{0}^{f(x)} py^{p-1} dy dx$$

$$= \iint_{R(f,E)} py^{p-1} dy dx \qquad \text{(by Tonelli's Theorem)}$$

$$= \int_{0}^{\infty} \int_{\{x \in E: f(x) \ge y\}} py^{p-1} dx dy \qquad \text{(by Tonelli's Theorem)}$$

$$= p \int_{0}^{\infty} y^{p-1} \omega(y) dy$$

since $\omega(y) = |\{x \in E : f(x) \ge y\}|$ almost everywhere.