Lax Solution Part 5

mathtuition88.com

May 4, 2016

Textbook: Functional Analysis by Peter D. Lax

Exercises: Miscellaneous exercises from various chapters.

1 Chapter 6: Hilbert Spaces

1.1 Exercise 4

Prove lemma 5.

(i)

Let l be a nonzero linear functional on H. Define $N:=\{x\in H\mid l(x)=0\}$. N is clearly a linear subspace of H. We have $\operatorname{codim}(N)=\dim(H/N)$. By the first isomorphism theorem, $H/N=H/\ker l\cong \mathbb{K}=\mathbb{R}$ or \mathbb{C} .

Therefore $\operatorname{codim}(N) = \dim_{\mathbb{K}}(\mathbb{K}) = 1$.

(ii)

Assume $\ker l = \ker m = N$. If l = m are the zero linear functionals, then l = cm holds trivially.

Otherwise, by part (i), we have $\dim(H/N) = 1$. Choose $y \notin N$. Then $N + \operatorname{span}\{y\} = H$. Let $x \in H$, then x = n + ty where $n \in N$, $t \in \mathbb{C}$.

Case 1: $t \neq 0$. We have

$$\frac{l(x)}{m(x)} = \frac{l(n+ty)}{m(n+ty)} = \frac{tl(y)}{tm(y)} = \frac{l(y)}{m(y)}.$$

Thus
$$l(x) = \frac{l(y)}{m(y)} m(x)$$
.

Case 2: t = 0. Then $l(x) = \frac{l(y)}{m(y)}m(x) = 0$ still holds.

(iii)

Let l be a bounded linear functional. Denote its nullspace by N. Let $\{x_n\}$ be a sequence in N that converges to $x \in H$. Then

$$l(x) = l(\lim_{n \to \infty} x_n)$$

= $\lim_{n \to \infty} l(x_n)$ (since l is bounded implies l is continuous)
= 0 .

So $x \in N$ and thus N is closed.

2 Chapter 8: Duals of Normed Linear Spaces

2.1 Exercise 1

Show that Y^{\perp} is a closed linear subspace of X'.

Proof. Let $\alpha, \beta \in \mathbb{C}$, $l_1, l_2 \in Y^{\perp}$, $y \in Y$.

$$(\alpha l_1 + \beta l_2)(y) = \alpha l_1(y) + \beta l_2(y) = 0$$
. Therefore Y^{\perp} is linear.

Let (l_n) be a sequence in Y^{\perp} converging to $l \in X'$, i.e. $||l_n - l|| \to 0$. There exists N such that for all $n \geq N$, $||l_n - l|| = \sup_{x \leq 1} |(l_n - l)(x)| < \epsilon$. Let $y \in Y$. For $n \geq N$, we have

$$|l(y)| = ||y|| |l(\frac{y}{||y||})|$$

$$\leq ||y|| |(l - l_n)(\frac{y}{||y||})| + ||y|| |l_n(\frac{y}{||y||})|$$

$$< ||y|| \epsilon.$$

Since ϵ is arbitrary, l(y) = 0 for all $y \in Y$. Thus $l \in Y^{\perp}$.

2.2 Exercise 2

Let Y be a closed subspace of a normed linear space X. Show that the dual of (X/Y) is isometrically isomorphic with Y^{\perp} .

Proof. Define $\psi: (X/Y)' \to Y^{\perp}$, $l \mapsto \tilde{l}$, where $\tilde{l}(x) = l(x+Y)$. We note that ψ is linear.

For surjectivity, note that for any $f \in Y^{\perp}$, we can define $g \in (X/Y)'$ such that g(x+Y)=f(x). Then $f(x)=\tilde{g}(x)$. We have that g is well-defined: if $x_1+Y=x_2+Y$, then $f(x_1)-f(x_2)=f(x_1-x_2)=g(x_1-x_2+Y)=g(Y)=0$.

$$\begin{split} \|l\| &= \sup_{\|x+Y\| \le 1} |l(x+Y)| \\ &= \sup_{\|x+Y\| \le 1} |\tilde{l}(x)| \\ &= \sup_{\|x+y\| \le 1, x \in X, y \in Y} |\tilde{l}(x+y)| \\ &= \sup_{\|z\| \le 1, z \in X} |\tilde{l}(z)| \\ &= \|\tilde{l}\|. \end{split}$$

3 Chapter 15: Bounded Linear Maps

3.1 Exercise 1

$$||M + K|| = \sup_{\|x\|=1} ||Mx + Kx||$$

$$\leq \sup_{\|x\|=1} (||Mx|| + ||Kx||)$$

$$\leq \sup_{\|x\|=1} ||Mx|| + \sup_{\|x\|=1} ||Kx||$$

$$= ||M|| + ||K||$$

3.2 Exercise 8

Prove that multiplication of maps is a continuous operation in the strong topology on the unit balls of $\mathcal{L}(X,U)$ and $\mathcal{L}(U,W)$.

Proof. Let $\{M_n\}$ be a sequence of maps in the unit ball of $\mathcal{L}(X,U)$ converging strongly to M, i.e. $||M_n x - M x|| \to 0$, for all $x \in X$.

Let $\{N_n\}$ be a sequence of maps in the unit ball of $\mathcal{L}(U, W)$ converging strongly to N, i.e. $||N_n u - Nu|| \to 0$, for all $u \in U$.

$$||N_{n}M_{n}x - NMx|| \le ||N_{n}M_{n}x - N_{n}Mx|| + ||N_{n}Mx - NMx||$$

$$\le ||N_{n}|| ||M_{n}x - Mx|| + ||N_{n}(Mx) - N(Mx)||$$

$$\le ||M_{n}x - Mx|| + ||N_{n}(Mx) - N(Mx)||$$

$$\to 0 \quad \text{as } n \to \infty.$$

Thus multiplication is continuous.

3.3 Exercise 10

Show that in a complex Hilbert space $(NM)^* = M^*N^*$.

Proof. Let H be a complex Hilbert space. Let $M:H\to H,\,N:H\to H.$ Let $x,y\in H.$ We have

$$\langle x, M^*N^*y \rangle = \langle Mx, N^*y \rangle$$
$$= \langle NMx, y \rangle$$
$$= \langle x, (NM)^*y \rangle.$$

This implies $\langle x, M^*N^*y - (NM)^*y \rangle = 0$ for all $x, y \in H$. Thus $M^*N^* = (NM)^*$.