Lax Solution Part 4

www.mathtuition88.com

October 27, 2016

Textbook: Functional Analysis by Peter D. Lax

Exercises: Ch 16: Q2-4. Ch 21: Q1, 2, 9, 10. Ch 28: 1, 5, 9, 10.

1 Chapter 16

Exercise 2

Let $h = \chi_{[0,1]}$, the characteristic function of [0,1]. We have $\|\chi_{[0,1]}\|_{\infty} = 1$, so $\chi_{[0,1]} \in L^{\infty}$. Then,

$$(Hh)(x) = \frac{1}{\pi} \int_0^1 \frac{1}{x - t} dt$$
$$= \frac{1}{\pi} [-\ln|x - t|]_0^1$$
$$= \frac{1}{\pi} \ln \frac{|x|}{|x - 1|}.$$

As $x \to 1$, $(Hh)(x) \to \infty$. Thus, Hh is an unbounded function, so H is not bounded as a map: $L^{\infty} \to L^{\infty}$.

Suppose to the contrary H is bounded as a map: $L_1 \to L_1$. In the textbook (pg 183) it is proved that the norm of $H:(L^p)' \to (L^p)'$ is equal to the norm of $H:L^p \to L^p$. Since $(L^1)' \cong L^{\infty}$, this implies that H is bounded as a map: $L^{\infty} \to L^{\infty}$ which is a contradiction.

Thus H is not bounded as a map: $L^1 \to L^1$.

Exercise 3

Consider $f(t) = e^{-at}$, where a > 0. Note that $f \in L^p(\mathbb{R}_+)$ for all $1 \le p \le \infty$, since $||f||_p = (\frac{1}{ap})^{1/p}$ for $1 \le p < \infty$, $||f||_{\infty} = 1$.

$$(Lf)(s) = \int_0^\infty e^{-(a+s)t} dt$$
$$= \frac{1}{a+s}$$

For p > 1,

$$||Lf||_{L^p}^p = \int_0^\infty \frac{1}{(a+s)^p} \, ds$$
$$= \frac{a^{-p+1}}{p-1}.$$

Case 1) If $1 , consider <math>f_n(t) = e^{-nt}$, i.e. a = n. Then,

$$||L||^p = \sup_{f \neq 0} \frac{||Lf||_p^p}{||f||_p^p}$$

$$\geq \lim_{n \to \infty} \frac{||Lf_n||_p^p}{||f_n||_p^p}$$

$$= \lim_{n \to \infty} (\frac{n^{-p+1}}{p-1} \cdot np)$$

$$= \lim_{n \to \infty} (\frac{p}{p-1} \cdot n^{-p+2})$$

$$= \infty.$$

Case 2) If $2 , consider <math>f_n(t) = e^{-t/n}$, i.e. $a = n^{-1}$. Then similarly,

$$||L||^{p} \ge \lim_{n \to \infty} \left(\frac{n^{p-1}}{p-1} \cdot n^{-1}p\right)$$
$$= \lim_{n \to \infty} \left(\frac{p}{p-1} \cdot n^{p-2}\right)$$
$$= \infty$$

Case 3) If p = 1, $f(t) = e^{-at}$,

$$||Lf||_{L_1} = \int_0^\infty \frac{1}{a+s} ds$$

$$= \lim_{r \to \infty} [\ln |a+s|]_0^r$$

$$= \lim_{r \to \infty} \ln \frac{|a+r|}{|a|}$$

$$= \infty$$

Case 4) If $p = \infty$, $f(t) = e^{-at}$,

$$||Lf||_{\infty} = \inf\{C \ge 0 \mid |\frac{1}{a+s}| \le C \text{ for almost every } s\} = \infty.$$

Thus L is not bounded as a map of $L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$, except for p = 2 which is shown in the textbook (pg 183, Theorem 9).

Exercise 4

Let s = -t, then

$$g(r) = -\int_0^{-\infty} \frac{f(-s)}{r-s} ds = \int_{-\infty}^0 \frac{f(-s)}{r-s} ds.$$

Let h(s) := f(-s) for $s \le 0$, h(s) = 0 otherwise. Then,

$$g(r) = \int_{-\infty}^{0} \frac{h(s)}{r - s} ds$$
$$= PV \int \frac{h(s)}{r - s} ds$$
$$= \pi \cdot \frac{1}{\pi} PV \int \frac{h(s)}{r - s} ds$$
$$= \pi (Hh)(r)$$

where H is the Hilbert transform, which is proved to be a bounded map of $L^p(\mathbb{R}) \to L^p(\mathbb{R})$ for all 1 . Thus,

$$||L^{2}f||_{L^{p}(\mathbb{R}_{+})} = ||g||_{L^{p}(\mathbb{R}_{+})}$$

$$= ||\pi H h||_{L^{p}(\mathbb{R})}$$

$$\leq \pi ||H|| ||h||_{L^{p}(\mathbb{R})}$$

$$= \pi ||H|| ||f||_{L^{p}(\mathbb{R}_{+})}$$

since

$$||h||_{L^{p}(\mathbb{R})} = \left(\int_{-\infty}^{\infty} |h(s)|^{p} ds\right)^{1/p}$$

$$= \left(\int_{-\infty}^{0} |f(-s)|^{p} ds\right)^{1/p}$$

$$= \left(\int_{0}^{\infty} |f(t)|^{p} dt\right)^{1/p}$$

$$= ||f||_{L^{p}(\mathbb{R}_{+})}.$$

2 Chapter 21

Exercise 1

(c)

Let $(x_n + y_n)$ be a sequence in $C_1 + C_2$, where $x_n \in C_1$, $y_n \in C_2$. Since C_1 is precompact, (x_n) has a Cauchy subsequence (x_{n_k}) . Consider (y_{n_k}) , which is a sequence in C_2 , thus has a Cauchy subsequence $(y_{n_{k_l}})$. Then $(x_{n_{k_l}} + y_{n_{k_l}})$ is a Cauchy subsequence of $(x_n + y_n)$, since it is the sum of two Cauchy sequences, as shown below.

Lemma 2.1. If (z_n) and (w_n) are Cauchy sequences in a normed linear space X, then $(z_n + w_n)$ is Cauchy.

Proof.
$$||z_n + w_n - (z_m + w_m)|| \le ||z_n - z_m|| + ||w_n - w_m|| \to 0 \text{ as } n, m \to \infty.$$

Method 2:

Let C_1 and C_2 be precompact subsets of a Banach space X. Since C_1 is precompact, $C_1 \subseteq \bigcup_{i=1}^k B_{\epsilon/2}(x_i)$, where $x_i \in X$. Similarly, $C_2 \subseteq \bigcup_{j=1}^n B_{\epsilon/2}(y_j)$, where $y_j \in X$.

Lemma 2.2.

$$C_1 + C_2 \subseteq \bigcup_{j=1}^n \bigcup_{i=1}^k B_{\epsilon}(x_i + y_j).$$

Proof. Let $c_1 + c_2 \in C_1 + C_2$. We have $c_1 \in B_{\epsilon/2}(x_i)$ for some x_i , i.e. $||c_1 - x_i|| < \epsilon/2$. Similarly, $c_2 \in B_{\epsilon/2}(y_j)$ for some y_j , i.e. $||c_2 - y_j|| < \epsilon/2$. Thus,

$$||c_1 + c_2 - (x_i + y_i)|| \le ||c_1 - x_i|| + ||c_2 - y_i|| < \epsilon.$$

Therefore
$$c_1 + c_2 \in B_{\epsilon}(x_i + y_j) \subseteq \bigcup_{j=1}^n \bigcup_{i=1}^k B_{\epsilon}(x_i + y_j).$$

Thus, $C_1 + C_2$ is precompact.

(d)

Let C be a precompact set in a Banach space X, and let $\operatorname{Conv}(C)$ denote its convex hull. Since C is precompact, C can be covered by a finite number of balls of radius ϵ , i.e. $C \subseteq \bigcup_{i=1}^m B_{\epsilon}(y_i)$, where $y_i \in X$.

Let $Y := \{y_1, y_2, \dots, y_m\}$. Consider the continuous map

$$f: \mathbb{R}^m \to X$$

$$(a_1, a_2, \dots, a_m) \mapsto \sum_{i=1}^m a_i y_i.$$

Let $S = \{(a_1, \ldots, a_m) \mid a_j \geq 0, \sum_{j=1}^m a_j = 1\}$. S is closed and bounded thus compact in \mathbb{R}^m , by the Heine-Borel theorem. Note that $f(S) = \operatorname{Conv}(Y)$, thus $\operatorname{Conv}(Y)$ is compact because continuous functions map compact sets to compact sets. Thus, in particular $\operatorname{Conv}(Y)$ is precompact.

Lemma 2.3. $\operatorname{Conv}(C) \subseteq \operatorname{Conv}(Y) + B_{\epsilon}(0)$.

Proof. Let $z = \sum_{j=1}^k b_j z_j \in \text{Conv}(C)$, where $b_j \geq 0$, $z_j \in C$, $\sum_{i=1}^k b_j = 1$. We have that $z_j \in B_{\epsilon}(y_{i(j)})$ for some $y_{i(j)}$ (where $1 \leq i(j) \leq m$ depends on j), i.e. $||z_j - y_{i(j)}|| < \epsilon$.

Write $z_j = y_{i(j)} + (z_j - y_{i(j)})$. Then, $z = \sum_{j=1}^k b_j y_{i(j)} + \sum_{j=1}^k b_j (z_j - y_{i(j)})$. Note that $\sum_{j=1}^k b_j y_{i(j)} \in \text{Conv}(Y)$.

$$\| \sum_{j=1}^{k} b_j (z_j - y_{i(j)}) \| \le \sum_{j=1}^{k} b_j \| z_j - y_{i(j)} \|$$

$$< \sum_{j=1}^{k} b_j \epsilon$$

Thus
$$\sum_{j=1}^k b_j(z_j - y_{i(j)}) \in B_{\epsilon}(0)$$
.

Since $\operatorname{Conv}(Y)$ and $B_{\epsilon}(0)$ are both precompact, $\operatorname{Conv}(Y) + B_{\epsilon}(0)$ is precompact. $\operatorname{Conv}(C)$ is a subset of $\operatorname{Conv}(Y) + B_{\epsilon}(0)$ and thus precompact, since a subset of a precompact set is clearly precompact.

(e)

Let (Mx_n) be a sequence of points of MC. Since (x_n) is a sequence in C, it has a Cauchy subsequence (x_{n_k}) .

$$||Mx_{n_k} - Mx_{n_l}|| = ||M(x_{n_k} - x_{n_l})||$$

 $\leq ||M|| ||x_{n_k} - x_{n_l}||$
 $\to 0 \text{ as } k, l \to \infty.$

 (Mx_{n_k}) is a Cauchy subsequence of (Mx_n) , thus MC is precompact.

Exercise 2

Let $D: X \to U$ be a bounded linear map such that dim $R_D < \infty$. X and U are Banach spaces.

Let B be the closed unit ball in X. Since R_D is a finite-dimensional subspace of U, it is complete. Hence, we may consider $D: X \to R_D$, where X and R_D are both Banach spaces.

Let $Dx \in DB$. Then, $||Dx|| \le ||D|| ||x|| \le ||D||$. Thus $DB \subseteq \{u \in R_D \mid ||u|| \le ||D||\} := G$.

Thus, the closed ball G is compact since R_D is finite-dimensional. This means G is precompact, thus DB is precompact since $DB \subseteq G$. Hence D is a compact map.

Exercise 9

Counterexample to CM_n tend uniformly to CM:

Proof. Let $X = l_2$. Consider $C: X \to X$, $Cx = (x, e_1)e_1$, i.e. $C(x_1, x_2, \dots) = (x_1, 0, 0, \dots)$. Since dim $R_C = 1 < \infty$, thus C is compact.

Consider
$$M_n: X \to X$$
, $M_n x = (x, e_n) e_1$, i.e. $M_n (x_1, x_2, \dots) = (x_n, 0, 0, \dots)$.

Since $x \in l_2$, $x_n \to 0$. Thus, $||M_n x - \mathbf{0}x|| \to 0$ as $n \to \infty$, i.e. $\{M_n\}$ tends strongly to $\mathbf{0}$. However,

$$||CM_n - C\mathbf{0}|| = ||CM_n||$$

$$= \sup_{\|x\|=1} ||CM_n x||$$

$$\ge ||CM_n(e_n)||$$

$$= ||C(1, 0, 0, \dots)||$$

$$= ||(1, 0, 0, \dots)||$$

$$= 1.$$

Thus CM_n does not tend uniformly to CM.

Proof of M_nC tends uniformly to MC:

Assume $C: X \to U$ is compact and $\{M_n\}$ tends strongly to $M: U \to V$, i.e. $||M_n u - M u|| \to 0$ for all $u \in U$. Rewriting, $||(M_n - M)u - \mathbf{0}u|| \to 0$ for all $u \in U$. This means $\{M_n - M\}$ converges strongly (thus weakly) to the zero operator.

By the Principle of Uniform Boundedness, there exists c > 0 such that $||M_n - M|| \le c$ for all $n \in \mathbb{N}$.

Fix $n \in \mathbb{N}$. By definition, we have

$$||M_nC - MC|| = \sup_{||x|| \le 1} ||(M_n - M)Cx||.$$

Let $\{x_k\}$ be a sequence such that $||x_k|| \leq 1$ and

$$||(M_n - M)Cx_k|| \ge ||M_nC - MC|| - \frac{1}{k}.$$

Since C is compact, it maps the closed unit ball B to a precompact set in U. Thus $CB \subseteq \bigcup_{i=1}^N B_{\epsilon}(u_i)$. Each $Cx_k \in B\epsilon(u_{i(k)})$ for some i(k) depending on k.

Let $\epsilon > 0$. There is a single $N_1 \in \mathbb{N}$ such that for all $n \geq N_1$, $||M_n u_i - Mu_i|| < \epsilon$ for all $1 \leq i \leq N$.

For $n \geq N_1$, choose $k > 1/\epsilon$. Then,

$$||M_n C - MC|| \le ||(M_n - M)Cx_k|| + \frac{1}{k}$$

$$\le ||(M_n - M)(Cx_k - u_{i(k)})|| + ||(M_n - M)u_{i(k)}|| + \frac{1}{k}$$

$$< c\epsilon + \epsilon + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, $||M_n C - MC|| \to 0$ as $n \to \infty$.

Thus M_nC tends uniformly to MC.

Exercise 10

(i)

Let $\{x_n\}$ be a weakly convergent sequence, i.e. $\lim_{n\to\infty} l(x_n) = l(x)$ for every l in X'. By the Principle of Uniform Boundedness, there exists c > 0 such that $||x_n|| \le c$ for all $n \in \mathbb{N}$.

Let $\{Cx_{n_k}\}$ be any subsequence of $\{Cx_n\}$. Since C maps bounded set to precompact set, $\{Cx_{n_k}\}$ has a Cauchy subsequence $\{Cx_{n_{k_l}}\}$. Since U is complete, $\{Cx_{n_{k_l}}\}$ converges strongly to some $u \in U$, i.e.

$$\lim_{l \to \infty} ||Cx_{n_{k_l}} - u|| = 0.$$

Since strong convergence implies weak convergence, $Cx_{n_{k_l}} \to u$. On the other hand, for any $\phi \in U'$, $\lim_{l\to\infty} \phi(Cx_{n_{k_l}}) = \lim_{l\to\infty} (C'\phi)(x_{n_{k_l}}) = (C'\phi)(x) = \phi(Cx)$. By uniqueness of weak limit, u = Cx. Thus every subsequence of $\{Cx_n\}$ has a further subsequence that converges to Cx.

Lemma 2.4. Let $\{y_n\}$ be a sequence in a normed linear space. Suppose every subsequence of $\{y_n\}$ has a further subsequence that converges (strongly) to y. Then $\{y_n\}$ converges (strongly) to y.

Proof. Suppose not. Then there exists $\epsilon > 0$ such that $||y_n - y|| \ge \epsilon$ for infinitely many n. Then there exists a subsequence $\{y_{n_k}\}$ with $||y_{n_k} - y|| \ge \epsilon$ for all $k \in \mathbb{N}$ so $\{y_{n_k}\}$ has no further subsequence that converges to y. Contradiction.

Apply Lemma 2.4 to $\{Cx_n\}$, we see that $\{Cx_n\}$ converges strongly to Cx.

(ii)

The converse of theorem 9 is: Let $M: X \to U$ map every weakly convergent sequence into one that converges strongly. Then M is compact.

It is false. Consider the identity operator $I: l^1 \to l^1$. We will prove below that in l^1 , every weakly convergent sequence is strongly convergent. Thus I maps every weakly convergent sequence into one that converges strongly.

However, in l^1 the closed unit ball B is not compact since l^1 is infinite-dimensional. Thus $\overline{IB} = \overline{B} = B$ is not compact. Thus I is not a compact operator.

Theorem 2.5. In l^1 , every weakly convergent sequence is strongly convergent.

Proof. Let (x^k) be a sequence in l^1 . Suppose $x^k \to x$. WLOG, by subtracting x, we may assume that $x^k \to 0$ but $||x^k||_1 \ge \epsilon$ for some $\epsilon > 0$. From this assumption we are going to derive a contradiction by constructing a $f \in l^{\infty}$ with $||f||_{\infty} = 1$ and a subsequence (x^{k_l}) such that $\langle f, x^{k_l} \rangle$ does not converge to zero. (Notation: We write $\langle f, x \rangle := \sum_{m=1}^{\infty} f_m x_m$).

We initialize $j_0 = 0$, set $k_1 = 1$, choose $j_1 \in \mathbb{N}$ such that $\sum_{j>j_1} |x_j^1| \le \epsilon/6$ and define the first j_1 entries of f as $f_j = \operatorname{sgn}(x_j^1)$ for $1 \le j \le j_1$.

Now proceed inductively and assume that for some $l \geq 1$ the numbers j_1, \ldots, j_l the subsequence $\{x^1, \ldots, x^{k_l}\}$ and the entries f_1, \ldots, f_{j_l} have already been constructed and fulfill for all $m \leq l$:

$$\left|\sum_{j \le j_{m-1}} f_j x_j^{k_m}\right| \le \epsilon/6 \tag{1}$$

$$\sum_{j=j_{m-1}+1}^{j_m} f_j x_j^{k_m} \ge 2\epsilon/3 \tag{2}$$

$$\sum_{j>j_m} |x_j^{k_m}| \le \epsilon/6 \tag{3}$$

Note that for l=1 these conditions are fulfilled: (1) is fulfilled since the sum is empty, (2) is fulfilled since $\sum_{j=1}^{j_1} f_j x_j^1 = ||x||_1 - \sum_{j>j_1} |x_j^1| > 5\epsilon/6$ and (3) is fulfilled by definition. To go from a given l to the next one, we first

observe that $x^k \to 0$ implies that for all j it holds that $x_j^k \to 0$. Hence, we may take k_{l+1} such that $\sum_{j \le j_l} |x_j^{k_l+1}| \le \epsilon/6$ and take $k_{l+1} > k_l$.

Since $x^{k_{l+1}}$ is a summable sequence, we find j_{l+1} such that $\sum_{j>j_{l+1}} |x_j^{k_l+1}| < \epsilon/6$ and again we may take $j_{l+1} > j_l$. We set $f_j = \operatorname{sgn}(x_j^{k_l+1})$ for $j_l \leq j \leq j_{l+1}$ and observe $\sum_{j=j_l+1}^{j_{l+1}} f_j x_j^{k_{l+1}} = \sum_{j=j_l+1}^{j_{l+1}} |x_j^{k_l+1}| > ||x_j^{k_{l+1}}||_1 - \epsilon/3 > 2\epsilon/3$.

By construction, the properties (1), (2) and (3) are fulfilled for l+1, and we continue the procedure ad infinitum. For the resulting $f \in l^{\infty}$, we have $||f||_{\infty} = 1$, and

$$\langle f, x^{k_l} \rangle = \sum_{j} f_j x_j^{k_l}$$

$$= \sum_{j \le j_{l-1}} f_j x_j^{k_l} + \sum_{j=j_{l-1}+1}^{j_l} f_j x_j^{k_l} + \sum_{j>j_l} f_j x_j^{k_l}$$

$$\geq -|\sum_{j \le j-1} f_j x_j^{k_l}| + \sum_{j=j_{l-1}+1}^{j_l} f_j x_j^{k_l} - \sum_{j>j_l} |x_j^{k_l}|$$

$$\geq -\epsilon/6 + 2\epsilon/3 - \epsilon/6$$

$$\geq \epsilon/3.$$

3 Chapter 28

Exercise 1

Let $A: H \to H$ be a symmetric operator. Let $\{x_n\}$ be a sequence in H such that $x_n \to x$ and $Ax_n \to u$, for some $x, u \in H$. Since strong convergence implies weak convergence, we have $(x_n - x, y) \to 0$ and $(Ax_n - u, y) \to 0$ for

all $y \in H$.

$$|(Ax - u, y)| = |(A(x - x_n) + Ax_n - u, y)|$$

$$\leq |(A(x - x_n), y)| + |(Ax_n - u, y)|$$

$$= |(x - x_n, Ay)| + |(Ax_n - u, y)|$$

$$\to 0 \text{ as } n \to \infty.$$

This means (Ax - u, y) = 0 for all $y \in H$, thus Ax = u. Hence A is closed.

It is clear that A is linear, using the symmetric property of A and linearity of the inner product.

By the closed graph theorem, A is continuous and hence bounded.

Exercise 5

Let H be a Hilbert space. Assume $\{x_n\}$ converges weakly to $x \in H$ and $\lim_{n\to\infty} \|x_n\| = \|x\|$. We have that $\langle x_n, y \rangle \to \langle x, y \rangle$ for all $y \in H$. In particular, $\langle x_n, x \rangle \to \|x\|^2$.

$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle$$

$$= \langle x_n, x_n \rangle - \langle x_n, x \rangle - \langle x, x_n \rangle + \langle x, x \rangle$$

$$= ||x_n||^2 - 2\operatorname{Re}\langle x_n, x \rangle + ||x||^2$$

$$\to ||x||^2 - 2||x||^2 + ||x||^2$$

$$= 0$$

Thus, x_n converges strongly to x.

Exercise 9

Let *U* be a unitary map. Note that ||Ux|| = ||x|| implies $||U|| = \sup_{||x||=1} ||Ux|| = \sup_{||x||=1} ||x|| = 1$. We also have $||U^*|| = ||U|| = 1$.

$$\begin{split} \langle U^*Ux - x, U^*Ux - x \rangle &= \|U^*Ux\|^2 - \langle U^*Ux, x \rangle - \langle x, U^*Ux \rangle + \|x\|^2 \\ &= \|U^*Ux\|^2 - \langle Ux, Ux \rangle - \langle Ux, Ux \rangle + \|x\|^2 \\ &= \|U^*Ux\|^2 - 2\|Ux\|^2 + \|x\|^2 \\ &= \|U^*Ux\|^2 - \|Ux\|^2 \\ &\leq \|U^*\|^2 \|Ux\|^2 - \|Ux\|^2 \\ &= 0 \end{split}$$

By positive definiteness of inner product, $U^*Ux = x$ for all x. Thus $U^*U = I$.

Exercise 10

Lemma 3.1. C is a compact normal operator.

Proof. We have C = U - I, thus $C^* = U^* - I$. By direct computation we have

$$C^*C = U^*U - U^* - U + I$$
$$= 2I - U^* - U$$
$$= CC^*.$$

We use Corollary 2 which states that every compact normal operator has a complete set of orthonormal eigenvectors. Let $\{z_n\}$ be a complete set of orthonormal eigenvectors of C, with $Cz_n = \alpha_n z_n$.

Then, $Uz_n = z_n + \alpha_n z_n = (1 + \alpha_n)z_n$. So $\{z_n\}$ is a complete set of orthonormal eigenvectors of U.

We have $||Uz_n|| = |1 + \alpha_n|||z_n|| = ||z_n||$, thus all eigenvalues $\{1 + \alpha_n\}$ have absolute value 1, since $||z_n|| \neq 0$.