Lax Solution Part 2

www.mathtuition88.com

October 27, 2016

Textbook: Functional Analysis by Peter D. Lax

Exercises: Ch 8: Q6,7. Ch 10: Q5,6.

1 Chapter 8

1.1 Exercise 6

 (\subseteq) Let C be the convex hull of M. The closure of the convex hull of M, denoted cl(C), is the smallest closed set containing C. Chapter 1 Theorem 6 says that C is the smallest convex set containing M. Thus cl(C) is a closed set containing M.

Let $x, y \in cl(C)$, $0 \le a \le 1$. There exists sequences (x_n) , (y_n) in C converging to x, y respectively. Then $(ax_n + (1-a)y_n)$ is a sequence in C converging to $ax + (1-a)y \in cl(C)$. Thus cl(C) is a closed **convex** set containing M. Therefore

$$\check{M} \subseteq cl(C)$$

since \check{M} is the intersection of all closed convex sets containing M.

 (\supseteq) Let $x \in cl(C)$. There exists a sequence (x_n) in C converging to x. Let D be any closed convex set containing M. Since C is the smallest convex set containing M, so $C \subseteq D$. So (x_n) is a sequence in D. Since D is closed, so $x \in D$. Therefore $x \in M$, the intersection of all closed convex sets containing M. Thus

$$cl(C) \subseteq \check{M}$$
.

1.2 Exercise 7

(i)

$$S_M(l+m) = \sup_{y \in M} [l(y) + m(y)]$$

$$\leq \sup_{y \in M} l(y) + \sup_{y \in M} m(y)$$

$$= S_M(l) + S_M(m)$$

- (ii) $S_M(0) = \sup_{y \in M} 0 = 0$
- (iii) For a > 0,

$$S_M(al) = \sup_{y \in M} al(y) = a \sup_{y \in M} l(y) = aS_M(l)$$

(iv) Let $M \subseteq N$.

$$S_M(l) = \sup_{y \in M} l(y) \le \sup_{y \in N} l(y) = S_N(l)$$

(v)

$$S_{M+N}(l) = \sup_{y \in M+N} l(y)$$

$$= \sup_{m \in M, n \in N} l(m+n)$$

$$= \sup_{m \in M, n \in N} (l(m) + l(n))$$

$$= \sup_{m \in M} l(m) + \sup_{n \in N} l(n)$$

$$= S_M(l) + S_N(l)$$

(vi)

$$S_{-M}(l) = \sup_{y \in -M} l(y)$$
$$= \sup_{z \in M} l(-z)$$
$$= \sup_{z \in M} -l(z)$$
$$= S_M(-l)$$

(vii) Since $M \subseteq \overline{M}$, by monotonicity, $S_M(l) \leq S_{\overline{M}}(l)$.

$$\begin{split} S_{\overline{M}}(l) &= \sup_{y \in \overline{M}} l(y) \\ &= \sup_{\substack{\text{convergent} \\ (y_n) \text{ in } M}} l(\lim_{n \to \infty} y_n) \\ &= \sup_{\substack{\text{convergent} \\ (y_n) \text{ in } M}} \lim_{n \to \infty} l(y_n) \quad \text{(by continuity of } l) \\ &= \sup_{(y_n) \text{ in } M} l(y_n) \mid (y_n) \mid (y_n) \text{ a convergent sequence in } M \} \end{split}$$

Let $\lim_{n\to\infty} l(y_n) \in A$. We have $\sup_{y\in M} l(y) \ge l(y_n)$ for all n, so $\sup_{y\in M} l(y) \ge \lim_{n\to\infty} l(y_n)$, i.e. $S_M(l) = \sup_{y\in M} l(y)$ is an upper bound of A. Then $S_{\overline{M}}(l) = \sup_{x\in M} A \le S_M(l)$.

(viii) Denote the convex hull of M by C.

$$\begin{split} S_C(l) &= \sup_{y \in C} l(y) \\ &= \sup\{l(\sum_{j=1}^n a_j x_j) \mid x_j \in M, a_j \geq 0, \sum_{j=1}^n a_j = 1\} \text{ (since each } y \in C \\ &\text{is a convex combination of points in } M) \\ &= \sup\{\sum_{j=1}^n a_j l(x_j) \mid x_j \in M, a_j \geq 0, \sum_{j=1}^n a_j = 1\} \text{ (by linearity of } l) \\ &= \sum_{j=1}^n a_j \sup\{l(x) \mid x \in M\}, \text{ where } a_j \geq 0, \sum_{j=1}^n a_j = 1 \\ &= \sup\{l(x) \mid x \in M\} \end{split}$$

2 Chapter 10

 $=S_M(l)$

2.1 Exercise 5

Let C be a weakly sequentially compact set. Suppose to the contrary C is not bounded, i.e. for all $x \in X$, for all r > 0, there exists $y \in C$ such that $||x - y|| \ge r$. Thus, we may construct a sequence (y_n) in C such that

$$||y_n|| \geq n$$

for all n (by choosing x = 0, r = n).

 (y_n) has a subsequence (y_{n_k}) that is weakly convergent, with

$$||y_{n_k}|| \ge n_k \ge k$$

for all $k \in \mathbb{N}$. This contradicts Theorem 4' which states that a weakly convergent sequence in a normed linear space is uniformly bounded in norm.

2.2 Question 6

Let U be a Banach space that is the dual of another Banach space X. Assume that the sequence $\{u_n\}$ in U is weak* convergent to u, i.e. $\lim u_n(x) = u(x)$ for all x in X.

We have $||u_n(x)|| \le ||u_n|| ||x||$ for all x in X. Thus,

$$\lim \inf \|u_n(x)\| \le \lim \inf \|u_n\| \|x\|.$$

Lemma 2.1. $\liminf ||u_n(x)|| = ||u(x)||$.

Proof. By continuity of the norm, we have $\lim ||u_n(x)|| = ||\lim u_n(x)|| = ||u(x)||$. Hence the sequence $(||u_n(x)||)$ converges and so $\lim \inf ||u_n(x)|| = \lim ||u_n(x)|| = ||u(x)||$.

$$||u(x)|| \le \liminf ||u_n|| ||x||$$

 $\sup_{||x||=1} ||u(x)|| \le \liminf ||u_n||$

Thus $||u|| \le \liminf ||u_n||$.