# Updated LaTeX to WordPress Converter

WordPress is notorious for not accepting \begin{align} … \end{align} as it is not in math mode.

I have updated the LaTeX to WordPress Converter to change \begin{align} … \end{align} to l atex\begin{aligned} … \end{aligned} which works in WordPress.

## Test Input:

Let $h=\chi_{[0,1]}$, the characteristic function of $[0,1]$. We have $\|\chi_{[0,1]}\|_\infty=1$, so $\chi_{[0,1]}\in L^\infty$. Then,
\begin{align*}
(Hh)(x)&=\frac{1}{\pi}\int_0^1\frac{1}{x-t}\ dt\\
&=\frac{1}{\pi}[-\ln|x-t|]_0^1\\
&=\frac{1}{\pi}\ln\frac{|x|}{|x-1|}.
\end{align*}
As $x\to 1$, $(Hh)(x)\to\infty$. Thus, $Hh$ is an unbounded function, so $H$ is not bounded as a map: $L^\infty\to L^\infty$.
$\frac{a}{b}=c$

## Test Output:

Let $h=\chi_{[0,1]}$, the characteristic function of $[0,1]$. We have $\|\chi_{[0,1]}\|_\infty=1$, so $\chi_{[0,1]}\in L^\infty$. Then,
\begin{aligned} (Hh)(x)&=\frac{1}{\pi}\int_0^1\frac{1}{x-t}\ dt\\ &=\frac{1}{\pi}[-\ln|x-t|]_0^1\\ &=\frac{1}{\pi}\ln\frac{|x|}{|x-1|}. \end{aligned}
As $x\to 1$, $(Hh)(x)\to\infty$. Thus, $Hh$ is an unbounded function, so $H$ is not bounded as a map: $L^\infty\to L^\infty$.
$\displaystyle \frac{a}{b}=c$

## Author: mathtuition88

http://mathtuition88.com

## 2 thoughts on “Updated LaTeX to WordPress Converter”

This site uses Akismet to reduce spam. Learn how your comment data is processed.