Methodology for Checking for Careless Mistakes

Checking for careless mistakes using the Substitution Method

  • Normal method of checking (i.e. check your working from front to back again), may or may not find the error
  • Using Substitution Method of checking guarantees that your answer is correct, and will find an error if there is one.
  • Use  Substitution Method of checking for all algebra/solving/simplify questions worth 2 marks or more. You will be able to save many many marks using this method!
  • Only takes 10 seconds with practice. (use calculator)

Example (using substitution method)

Express \displaystyle\frac{2x-3}{x^2+4x+3}-\frac{1}{x+3} as a single fraction in its simplest form. [2 marks]

After getting your answer (\displaystyle\frac{x-4}{(x+3)(x+1)}), you can substitute in the value \boxed{x=9}.

When, x=9, \displaystyle\frac{2x-3}{x^2+4x+3}-\frac{1}{x+3}=\frac{1}{24}, and \displaystyle\frac{x-4}{(x+3)(x+1)}=\frac{1}{24}

Since both expressions give the same value, you have just checked that your answer is correct!

Humorous cartoon featuring Jackie Chan.
Sincerely wishing all students to reduce their careless mistakes to as low as possible!

Author: mathtuition88

4 thoughts on “Methodology for Checking for Careless Mistakes”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.