Solution 1 (Sequence): Monkeys & Coconuts

Math Online Tom Circle

Monkeys & Coconuts Problem

Solution 1 : iteration problem => Use sequence
$Latex U_{j} =\frac {4}{5} U_{j- 1} -1 $

(initial coconuts)
$Latex U_0 =k$
$Latex f(x)=\frac{4}{5}(x-1)=\frac{4}{5}(x+4)-4$
$Latex U_1 =f(U_0)=f(k)= \frac{4}{5}(k+4)-4$

$Latex U_2 =f(U_1)=f(\frac{4}{5}(k+4)-4)= \frac{4}{5}((\frac{4}{5}(k+4)-4+4)-4$

$Latex U_2=(\frac{4}{5})^2 (k+4)-4$

$Latex U_3=(\frac{4}{5})^3 (k+4)-4$

$Latex U_4=(\frac{4}{5})^4 (k+4)-4$

$Latex U_5=(\frac{4}{5})^5 (k+4)-4$

$Latex U_5$ is integer  ,
$Latex 5^5 divides (k+4)$
k+4 ≡ 0 mod($Latex 5^5$)
k≡-4 mod($Latex 5^5$)
Minimum {k} = $Latex 5^5 -4$= 3121 [QED]

Note: The solution was given by Paul Richard Halmos (March 3, 1916 – October 2, 2006)

View original post

Author: mathtuition88

One thought on “Solution 1 (Sequence): Monkeys & Coconuts”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.